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Abstract

This report considers techniques for using an atmospheric
transport model to deduce surface source strengths given surface concent-
rations as a function of latitude. 1In particular it is shown that the
class of '"source-determination' problems including the problem of deter—
mining seasonal CO, sources i1s well-defined and that formally a unique
source solution can be expected. Specific computational techniques are
described and a number of numerical examples related to the seasonal
variation of CO2 are presented.



1. Introduction

This report describes a number of mathematical and computational
techniques for determining the strengths of the sources and sinks of
atmospheric constituents, assuming that these sources are at the surface of
the earth and that the concentration of the constituent is also known at
the earth's surface. The most important example of this type of
calculation is the deduction of seasonally varying source strengths of CO
from the observed annual cycle of CO, at the earth's surface. The earliest
attempt to perform this calculation Was by Bolin and Keeling (1963). This
calculation was limited in accuracy, firstly because of the limited data
sets available at that time and secondly because they tried to determine
simultaneously both source strengths and atmospheric transport
coefficients. Their calculation was based on a spectral representation of
a one-dimensional (latitude only) model of atmospheric transport,

A more extensive calculation of surface CO, sources was
undertaken by Pearman and Hyson (1980). They used a”two-dimensional (i.e.
zonally averaged) model of atmospheric transport (Hyson et al., 1980). The
main transport process was advection and observed wind-field data were used
in the model. There was an additional diffusive transport that was tuned
by using observations of the distribution of CCl,F. An alternative
approach to the question of the seasonally varying CO, sources has recently
been described in the work of Fung et al. (1983). Théy employed data on
Net Primary Production to estimate the biospheric sources and used these
sources in their three-dimensional model calculations. These calculations
produced large differences in seasonal amplitudes between oceanic and
continental regions. The amplitudes in oceanic regions were in agreement
with observations at these sites as were those of Pearman and Hyson (1980)
(by construction) but because of the land-sea differences, Fung et al.
obtained this agreement using sources that were roughly twice the strength
of those used by Pearman and Hyson (1980). This discrepancy has been
discussed by Enting and Pearman (1984).

The layout of the remainder of this report is as follows:

Section 2 describes the mathematical basis of the source
determination problem in terms of Green's functions for the differential
equations obtained by expressing the transport model in a spatial finite
difference formalism. This gives an explicit solution that demonstrates
the existance of a unique source function in all but exceptional singular
cases. A mathematical expression of the separation of the atmospheric and
ocean modelling aspects of the CO2 problem is also described.

Section 3 describes numerical techniques for determining the
surface sources, given an atmospheric transport model and a specification
of the surface concentrations as a function of time. The main requirements
for the applicability of the theory from Section 2 and the numerical
techniques in Section 3 are that the concentrations be specified (as
functions of time) at those grid points at which the sources are unknown
and that the remaining contributions to the atmospheric model should be
directly proportional to the concentrations. These requirements are
satisfied for the CO, problem if the surface concentrations are specified
because all the sourCes are at the surface, and the only other processes



are the transports which are, for all passive constituents, modelled as
being proportional to the concentrations. The requirements would also be
satisfied for a constituent such as methane if the destruction coefficients
in the bulk of the atmosphere were assumed to be known. This chemical
destruction is generally modelled as being proportional to the methane
concentration so that given the rate coefficients, a specification of
surface concentrations of methane would allow the deduction of the net
source strength at the earth's surface.

Section 4 gives a brief summary of the revised two-dimensional
transport model developed within the Division of Atmospheric Research of
CSTRO, Australia (Enting, 1984) and Section 5 shows some trial solutions
that were obtained for the CO, system using this model, illustrating some
of the numerical characteristics of the computational techniques, including,
discussion of the error analysis. The final section summarises the results
that have been presented and further reviews the range of problems to which
the techniques may be applied. Appendix A gives additional details of a
special case of the Green's function formalism and Appendix B lists the
spectral form of the transport coefficients that was used in the numerical
examples,

2. Mathematical Formalism

The general solution of the 'source deduction' problem is most
readily expressed in terms of Green's functions defined in terms of the set
of ordinary differential equations that are used to model the atmospheric
transports in terms of transport parameters (A), concentrations (C) and
sources (S).

The general expression that is considered is: -

dc,
1 =
rr e g Aij(t) Cj(t) Si(t) (2,1a)
or v L,, C, = 8§, (2.1b)
g 11 i

where the set of equations arises from either a finite difference
representation of the spatial derivatives or a truncation of the spectral
representation of the spatial behaviour. The indices i,j range over all
spatial grid points (or over all spatial spectal components if a spectral
representation is used).

The terms involved in the A, (t) will generally represent the
transports but they will also includelgny sinks where the loss rate is
proportional to the concentration, (e.g. radioactive decay or first order
chemical processes). Under the two conditions given below, the
differential operator [ has an inverse (G called the Green's function
operator such that

cC. = % G.,. S, (2.2)



As might be expected, the inverse of the differential operator L
is an integral operator. Equation 2.2 is a symbolic representation of

b
Ci(t) = ? Ja Gij(t,t') Sj(t') dt! (2.3)

where a and b are the values at which the conditions (2.4) apply.

The sufficient conditions for the existance of the Green's
function are (Coddington and Levinson, 1955)

(1) the conditions on the initial and final values can be expressed
in terms of two matrices M and N as:

; [Mij Cj(a) + Nij Cj(b)] = 0, for all i (2.4)

and

(i1) if S,(t) = 0 then the differential equations have no non-trivial

gsolutions that satisfy the conditions (2.4).

The two most important types of conditions are (a) zero initial
conditions, i.e. Ci(a) = 0 for all 1, and (b) periodicity conditions
Ci(a) = Ci(b) for all 1.

For constituents that are conserved in the atmosphere, condition

(i1) above is violated if periodic boundary conditions are involved because

the constant concentration solution is possible when S, = 0.  This case
must be treated using some reduced set of equations - an outline is given
in Appendix A.

The 'source-deduction' problem involves dividing the grid points
into two sets, ¢ and R, where for j ¢ o the sources (i.e. the S.,) are
unknown but the concentrations are known while for j ¢ R the soiirces are
known but the concentrations are unknown.

Expanding equation 2.1 gives

s L,.C. + 5 L., C =68, , 1iegeaqa (2.5a)
jea H peB R .
L , C, + L C = S (2.5b
L 23 L “qp “p g’ ¢B )

jea PeB
The transport terms within the set j ¢ B are described by the term in
(2.5b) involving L so that the known source S and the transports of
known Cj from the ggt a act as an ‘'effective soarce' for set g, i.e.

v L cC =8 - 5 L ,C.,, qeB . (2.6)

PeB 4,p P q jea i3 J




This set of equations describing transports within the set B will have a
Green's function operator G?p such that

C = z
Ps>qef

Even in the case of conserved tracers it is not necessary to use a reduced

set B' because the operator [ acting on the set B is not conservative. In

particular if the terms on the right of (2.6) are zero, i.e. no sources in
set B and zero concentrations in set o, there will be a loss of a tracer

from region B into region a.

= 3§ G* S—ZL.Cj,reB. (2.7)

* .
Grp LQ:P CP rp q . qJ
qef jea-

Substituting the result (2.7) back into (2.5a) gives

S, = I Ei' - I Lir G? L .| C, + Lir G§ S . (2.8)
jea | 7 qyres YT riqep ¢

The main use of equation (2.8) is as a demonstration of the existence of a
unique solution to the 'source-deduction' problem.

As indicated in the introduction one of the main problems to
which this formalism can be applied is the determination of the surface
sources of CO, given observations of surface concentrations. In this case
known 'fixed'“sources above the surface are zero, i.e. S = 0, gef so that
the last sum in (2.8) vanishes. The result 2.8 shows thit the total net
surface source of CO. is determined as a functional of the surface
concentration functibns. Thus total surface source is made up of a
biospheric contribution and an ocean contribution. Since however the ocean
contribution is generally modelled by having the uptake determined as a
response to the CO, concentration at the surface, the net ocean uptake rate
will also be a funCtional of the surface concentrations. The net
biospheric source can be obtained by taking the difference between the
total source and the ocean source. There are two terms in the result that
are of further interest:

(a) The zero frequency term: If the periodic case is being investigated
it is mecessary to remove the mean

atmospheric CO, increase from the data sets. It is not, however,
necessary to rémove the time-averaged interhemispheric gradient and
from this gradient the formalism described above will produce a net
interhemispheric source imbalance giving the extent to which the mean
annual source at a point differs from the global mean source. (As
will be seen from the results in Section 5 the 'zero-frequency'
relation connecting interhemispheric gradients to interhemispheric
transport is not entirely independent of the seasonal variations
because of covariance effects between the seasonal cycle and the
transports.)

(b) The 1 year period term: This component is generally dominant and it
can be useful to examine it in detail,
particularly in the context of error analysis. The analysis can be
presented in a simple graphical form using the 'phasors' that are
commonly used in electrical engineering. Any sinusoidal variation
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Figure 2.1:

Phasor diagrams for amplitude and phase relations between
the phases of sources. The lengths of the vectors represent
the amplitudes and the angles with respect to the horizontal
represent the phases (relative to some arbitrary zero).

(a) The total CO, source is the sum of the oceanic and
biosphegic sourcés; (b) The total source determined by the
techniques of section 3 will be subject to various uncert-
ainties due to the uptake model and the surface concentr-
ation data; (c) These uncertainties combine when the
biospheric source is deduced by subtracting the ocean source
from the total source; (d) Similar phasor relations describe
a local rate of change of CO, concentrations as a sum of
transport and local source.
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(d)



Acos(2mt+¢) is regarded as the real part of a complex quantity
Aexp(2mit+i¢), factored as Aexp(id). exp(27it). Sums of sinusoidal
variations can be represented by the sums of the exponentials since
the real part of the sum is the sum of the real parts. The phase
relations between the components can be analysed by neglecting the
exp(2mit) factor which is common to all terms and using the
conventional graphical vector representation of complex numbers to

indicate the Aexp(i¢) factors. Figure 2.1 shows a set of hypothetical

phasor representations of the relation between the sources.

Figure 2,la shows the vectors for biospheric source, ocean source and
total source, illustrating how the total source is the vector sum of
the other two sources. 1In actual calculations, each quantity will
have a range of uncertainty - Figure 2.1b indicates the uncertainties
in the total source and the ocean source, these being the two
quantities that are calculated directly from the surface
concentrations. Figure 2.lc indicates schematically how these
uncertainties combine when calculating the biospheric source as a
difference. The exact situation is somewhat more complicated than
shown in these diagrams. Some of the uncertainties shown in

Figure 2.1b will be due to the models - the atmospheric transport
model and the ocean uptake model for total and oceanic sources
respectively. When calculating the biospheric source these
uncertainties can be regarded as independent. However in each case
there will be uncertainties in the calculated sources due to
uncertainties in the observed values of the surface concentrations.
These uncertainties are not independent and the assessment of the
final uncertainty must be obtained as a single calculation involving
both atmospheric and ocean modelling.

As well as the phasor representation of the sources it is
possible to obtain similar representations for mass balance in particular
regions. Taking a factor m, representing the number of moles of air

associated with grid point I, equation 2.la transforms to
& onc, = ImA, (t)C.(t) +mS (2.9)
dt i1 J i1ij 3 i i

where each term is in moles per year if C, is a mixing ratio. Figure 2.1d
shows a phasor representation of a singlelfrequency component of equation
(2.9) (again the 1 year period is of most interest) showing how local
changes are a combination of transports and local sources.

3. Computational Techniques

The Green's function formalism given in the previous section is
mainly useful for demonstrating the existence of unique solutions to the
source deduction problem. Since the Green's function techniques involve
integral operators they would not be particularly easy to use, even if
there were a convenient way to construct the operators. In practice there
is a simple direct technique based on numerical integration that is found
to converge rapidly to the solutions for the sources.




The procedure is based on the same division of the grid points
into two sets o and B as in the previous section. For set o the sources
are unknown but the concentrations are known while for set B the
concentrations are unknown but the sources are known - in many problems
(e.g. CO,) these known sources are zero. The procedure is then to
integraté the differential equations for set B numerically. If the system
is one that has zero initial concentrations then the procedure for deriving
sources can begin immediately. In the case of periodic boundary conditions
the equations must be integrated through a number of cycles (typically 1 or
2) until a periodic solution is approached sufficiently closely. The
equations for set B can be integrated numerically since the only terms
appearing in these differential equations are:

(i) the Sj’ j € B which are assumed known;
(ii) the Cj’ i € o which are assumed known;
(iii) the C.,, j € B which are found by integrating the equations
numerically so that the Cj’ j € B are found for a succession of

time steps.

Once the appropriate solutions for C,, j € B have been found then the
solutions for the sources can be found from

BCi .
Si = e ; Aij Cj s i€ea ‘(3,1)
J
which involves only
aC, '
(i) Ci’ 5233 ie o Ci is assumed known (and differentiable)

(i1) Ci’ i ¢ B, obtained by numerical integration.

As a simple example of the way in which this can be implemented,
the following algorithm description (based closely on PASCAL code) can be
used. It assumes 4 procedures:

(i) model(C,diffC,t) which has input C, the vector of concentrations
and output diffC, the vector ZAij(t)Cj:

(ii) cval(i,t) which gives Ci(t) for 1 € o at time t, i.e. the known
concentration;

aC,

(iii) cderiv(i,t) which gives gz—-for i € a at time t;

(iv) output(s,t) which takes a set of instantaneous sources strengths
S.(t), 1 € ¢ and prints them (or stores them for Fourier analysis

e%c.).



The code implements a predictor corrector formalism for doing the time
integration.

t: = t0;
while t < t max do
begin

model(C, Cdfl, t) ;
for i € B do

C{i}l ¢+ = C[i] + tstep*Cdfli[1] ;

for 1 € a do *
begin *
S[i] = cderiv(i,t) - Cdfl[i] ; *
C[i] = cval(i,t + tstep) ; %
end ; *

output (S,t) ; *

t : = t + tstep ;

{calculate corrector step}

model (C, Cdf2, t) ;

for 1 B do
C[i] : = C[i] + 0.5% (Cdf2[i] - Cdfl[i])*tstep ;

end .

In this example, once the functions cval and cderiv and the output are
defined only 6 additional lines (marked with *) of code are needed to
convert a predictor-corrector integration procedure into a source deduction
procedure., Similar changes would be required in other integration
procedures. For periodic systems such as the seasonal CO, cycles, the
alternative to time stepping integration is to use a spectral
representation of the time dependence. 1If the various functions are
expanded as -

Si(t) = i Sjn exp (2mnit) (3.2a)
C, (t = I C, 2mnit (3.2b
J( ) E Cin exp (2mnit) A )
Aij(t) = i Aijn exp (2mnit) (3.2¢)

then the set of differential equations obtained from the spatial finite
difference scheme becomes a set of algebraic equations:

2rin Cjn = I I Ajkm Ck,n—m + Sjn (3.3)
m k

where C, is known (and denoted q, ) for j € a and S, 1is known for

je B. JrBr the case of centred diffdtence schemes, thisdBet of equations

is likely to be diagonally dominant and the Gauss-Jacobi iterative

technique is a possible way of obtaining solutions without having to

explicitly invert the transport operator for the non-surface sites.
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Equation (3.3) is written as

21inC, - A,, C, = % L B, C + 8, (3.4)
j,n ijo “jn jkm "k,n-m jn
m k
where
Bjkm = 0 if 3 = kandm = 0 (3.5a)
= Ajkm otherwise, (3.5b)

This is used as the basis of an iterative solution

1 C(p)

¢ o (onin - A )7H | 1B, + s,
in jjo jkm “k,n-m jn
km
for j € B (3.6)
where C(p) = q for all p if k € a (3.7a)
k,m k,m ‘
and C® = 0 ifkeB o (3.7b)
k,m :
For j e o the sources are determined by
Sjn = 2rin an - i i Ajkm Ck,n—m jiea . (3.8)

In order to implement the computational scheme based on equations (3.6) and
(3.8) a sufficient computational capacity is the ability to compute

i Ajkm Ck as a field of nj for any specified m.
The value A,, can be extracted from the sum I A, L, by setting
jjo Kk jkm "k
m=20,¢, =1, ¢, =0 for k # j and evaluating the sum. Since each A,,

need onl§ be computed once for the whole calculation rather than oncejﬁgr
iteration, the inefficiency involved in this procedure is not particularly
serious and it has the considerable advantage that it allows the 'source-
deduction' procedure to be formulated in a manner independent of the finite
difference scheme that is used. The sum in (3.6) is then evaluated as

B, cP) o g

i Ccmem L A c(P) ] - A, c{P) (3.9)

K jk,m k,n-m in

Iz

m k
where the bracketed sum is the standard sum with the field g, corresponding
to a particular frequency component of the concentration field.
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It is possible to use a single computer routine to perform the
essential part of the evaluation for both this standard sum and the sums
needed in the time-stepping integration.

This is demonstrated by noting that the transport equation
(described in Section 4) and all practical finite difference
representations of this equation depend linearly on the transport
coefficients which we denote as ¢r.

Thus Ajk(t) = i Tjkr¢r(t) (3.10)
and if ¢r(t) = i ¢rm exp (2mrimt) (3.11)
then Ajkm = i Tjkr¢rm . (3.12)

A routine that evaluates L I T, r Ck y_ for abitrary sets of
fields r, defined on all grid points andj¥or abiErary sets of transport
coefficients y_ can be used in both the spectral form of the source
deduction probfem and the time stepping formalism. To illustrate this the
term corresponding to I T, . Y. is enclosed in brackets { } in the

Kr jkr "k 'r
expressions below.
(i) The spectral form of source deduction requires

L A, = {I

. Skm Ty } , explicitly. ‘(3.13)

Tjkr Ck ¢rm

(ii) the time stepping forms require

T Ajk(t) Ck(t)

k
= {i i Tjkr C () ¢_(t)} (3.14a)
= i exp (2nimt) {i i Tjkr Ck(t) ¢rm} . (3.14b)

The two forms of the sum for the time stepping are of comparable
computational complexity. TIf there are N grid points then there
are approximately 4N transport coefficients and if M spectral
components are used then evaluating the ¢_(t) requires 4NM
multiplications. The sum in brackets requires ~ 6N
multiplications if a centred difference scheme is used so the
first expression requires 4NM + 6N multiplications and the second
requires 6NM + MN., The first form is faster (at the expense of
having to explicitly store the N ¢,(t) values). In many calcul-
ations it may be sufficiently accurate to update the ¢j(t) in a
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stepwise fashion rather than at every time step and this will of
course accelerate the computations considerably. Explicitly
evaluating the Fourier series first (as in 3.l4a) rather than as
the last step (as in 3.14b) is essential when the spatial
variation is represented in a spectral form as described in
Section 4. In this case, truncation of the spatial sum can lead
to spurious small negative values for K and K__. This can only
be detected when the final ¢ (t) is ebBluated?” 1f negative

K wvalues are detectedrthey must be replaced by small
p881t1¥3 values as otherwise the transport equation would become
unstable.

4, The Transport Model

The revised Division of Atmospheric Research two-dimensional

atmospheric transport model has been described in detail by Enting (1984).
This section simply summarise the main features of the model and describes
its use in the source-determination calculations,

(1)

(ii)

(iii)

The transport model is based on a finite difference
representation of the two dimensional transport equation:

3c 3 [ :Ye }
M = »— |m K ==+ (mK _-V) =
ot op pp 9p ( Py ) dy

3 oC aC
+ — + (m pr + V) %} . (4.1)

= |m K
dy { yy 9y

'Reduced' or dimensionless units are used so that the vertical
coordinate p is a reduced pressure, 0 € p € 1, y = sin (latitude)
and ¥, the atmospheric mass stream function is in atmospheric
masses per year. The mean density in p-y coordinates is m = %,
The diffusion coefficients are related to those in other
coordinate systems by appropriate tensor transformations (see
Enting, 1984). The concentrations C are taken as being some

fixed multiple of the mixing ratios.

The finite difference representation uses an equally spaced grid
in the p and y directions. The computer implementation is
written so that all subprograms are independent of the number of
grid points. The actual resolution is specified in a single
common block (DEFN) and all the two-dimensional fields are stored
in common blocks. To enlarge the amount of storage it is (in
many Fortran systems including that of DAR) sufficient to change
the sizes of all common blocks within one BLOCK DATA subprogram.

The spatial differencing scheme uses centred differences and is
(apart from change of coordinates) equivalent to that given by
Miller et al. (1981), reexpressed to improve the computational
efficiency. The standard time integration technique is the
predictor-corrector technique as illustrated in the schematic
code in Section 3.




(iv)

(v)
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The model is implemented as a library of subroutines so as to
modularise the computations. The most important routine, TRANS,
performs the summation I I T, Cy ¢_ described in Section 3.
This is fundamental to normalj¥£me stepping integration, the time
stepping form of the source deduction problem and the spectral
form of the source deduction problem. The full time stepping sum
of transport terms defined by equation (3.l4a) together with any
known source terms is implemented by routine MODEL which combines
a call of TRANS and a call of a routine SOURCE. The library
provides alternative versions of SOURCE for different tracers.
Similarly the source deduction routine DEDUCE (which is
essentially a Fortran version of the code shown in Section 3)
takes the names of routines Cval, Cderiv and output as external
subprogram names so that the one routine can be used for a range
of different source deduction problems.

The standard input form for the transport coefficients uses a
gpectral representation in both space coordinates as well as in
time. The convention used in the inputs is to define

o(p,y,t) = L LZ ¢, g (p) g [(y+1)/2] g (2t)
k1m
where
g, (x) = cos (nmx) , n >0

sin (amx) , n < 0 .

The reason for this choice is that by defining symmetry
properties for the fields in a manner consistent with the
boundary conditions some of the series reduce to only sine or
cosine series and by ensuring the maximum possible degree of
continuity at the boundary, the convergence is improved. The
main reason for choosing a spectral representation is to aid the
implementation of the model in a manner that is independent of
the resolution, The input routines simply take the spectral
expansion and evaluate the Fourier series at the (p,y) values at
which the fields are needed. The only exception occurs for the
fields K and XK _ where spurious 'wiggles' associated with poor
convergexge can FRad to negative values that cause an instability
in the transports. It is necessary to set a minimum value for
these fields and use this minimum to replace any smaller values
that arise from the series. The ¥ and K series are zero at all
boundaries and by using only sine series’”’these boundary
conditions are satisfied automatically. Implicitly this is
defining a double range for each coordinate (reflecting about the
zero of p and %(y+1)) and taking ¢ and K__ as odd functions of
each variable. This definition also ensiifes that the first
derivatives of these fields will be continuous at these
boundaries. The functions K and K are regarded as even
functions under the same refldctionsPBo that only cosines of the
spatial variables occur. The field K > 0 as p? when p » 0. If
the series is written as PP
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Loag B () -8 @] g Dsly+rD] g (2t)

then this condition is satisfied. If an even function is assumed
for X then at p = 0 the first and second derivatives are
contiRBous. The field K is required to vanish quadratically at
y = =1 so that the approg¥iate re-expression of the series is

Loayg, e, syt - g, ,Bs(y+1) 1} g (p) g (20).

The lists of coefficients for K__ and K__ in Appendix B convert
these special cases into the gezgral fobR (at the expense of

repeating some index sets) so that if these lists are truncated
after any even number of terms the boundary conditions will be

satisfied.

The series shown in the appendix are the dominant contributions
which approximate the transport coeffients used by Hyson et al.
(1980). The stream functions are from wind-field data compiled
by Oort and Rasmussen (1971) and the diffusion coefficients were
originally obtained by Hidalgo and Crutzen (1977) but were
rescaled by Hyson et al. in order to improve the agreement with
distribution of CCL,F. It should also be noted that the fields

etc. are ndt the same fields as used by Hyson et al.
(¥¥80)pp In particular Hyson et al. used K__ to denote the field
that was called K by Enting (1984). 1In dddition the units have
been changed so ag'to express the present fields in a
'dimensionless' form. The transformations connecting the present
fields and those tabulated by Hyson et al. (1980) are given by
Enting (1984). An additional set of stream function data based
on the work of Oort (1983) is also listed. One of the tests
presented in Section 5 uses this set as an ‘alternative to the
older Oort and Rassmussen data used by Hyson et al. The results
are found to be similar in each case.

5. Examples

This section presents the results of some trial calculations as
an illustration of the type of results that can be expected in practice.
Full details of the application of these techniques to specific problems
will be presented elsewhere. The examples that are presented here are
those that are most relevant to the problem of analysing the seasonal
variation of CO,. 1In most examples the approximate concentration function

is defined by

C(y,t) = [2.5 - 3.5 cos (wy*)] sin 2%t ppmv (5.1a)
y* = Y(y+1) (5.1b)
y = sine (latitude) , (5.1c)

The transport fields were defined by the standard series given in
Appendix B and in most cases the model resolution was 8 pressure levels by

10 zomnes.




Month

Figure 5.1: Source strengths as functions of time throughout the year
deduced from the surface concentration function given by
equation (5.la) for 10 zones, (a) Southern hemisphere zones,
1 (south most) to 5 (tropical); (b) Northern hemisphere
zones 6 (tropical) to 10 (north most).

15
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(i) Standard case

This example uses:
(a) release 5.1a;
(b) time step 0.002 years;

{¢) Oort and Rasmussen data for stream functions (see
Appendix B);

(d) diffusion coefficients from Hyson et al. (1980), represented
by the spectral form from Appendix B and constrained so that

K__/Ay2, K__/bp? 2 5.0 (5.2
yy! 0V K0P (5.2)
for all points used in the finite difference scheme;

(e) 8 pressure levels and 10 zones.

, The routine DEDUCE based on the code shown in Section 3 was
integrated for a total of three years starting from an all zero initial
concentration state. The source strengths for each zone were found to have
converged to within 0.01 Gt/yr after 1.5 years. Figure 5.la shows the
southern hemisphere sources and Figures 5.1b shows the northern hemisphere
sources, taken from the output for the period .2 to 3 years.

It is not possible to draw many conclusions from this case in
isolation because it is based on a rough approximation to the actual
varition. It should be noted however that in the northern zones, the
seasonal CO, releases are comparable to the releases deduced by Pearman and
Hyson (19807 and are significantly less than those obtained by Fung et al.
(1983). This series is one check on the present model implementation,
indicating that the vertical mixing is being treated in a manner consistent
with the original model of Hyson et al. (1980). One interesting point that
does appear from the curves in Figures 5.la,b is that the annual mean
release is non-zero in various zones. On an annual average there is a net
transport of CO, from the northern zones to the tropics, in spite of the
fact that the afinual average gradient is zero at all points for release
5.la. This arises because of covariance effects between the seasonal
variations in the transport and the seasonal variations in the
concentrations. In the absence of an annual average transport, the
covariance effects lead to a mean interhemispheric gradient; in the absence
of such a gradient the covariance effects imply a mean transport.

(ii) Interhemispheric gradient

In order to explore these covariance effects further, the second
case considered is that of a fixed interhemispheric gradient with no
seasonality.

The concentration is fixed to

C(y,t) = 2.5 cos (my%) (5.3)
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Figure 5.2: Source strengths corresponding to a concentration that is

constant in time and varies with latitude according to
equation (5.3a). There are relatively strong seasonal
variations required in the tropics in order to maintain the
maximum gradient in a fixed position while the inter-
tropical convergence moves. (a) Southern zones as in Figure
5.1; (b) Northern zones; (c) Sources in zones 1,2,9,10
assuming the corresponding concentrations are fixed and all
intermediate sources are zero.
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The other conditions are the same as for case (i). The results are shown
in Figures (5.2a,b) for northern and southern hemispheres. Due to the
covariance effects a strong seasonal source in the tropics is needed to
maintain a fixed spatial distribution as the intertropical covergence
moves,

(iii) 'Pole-to-Pole' gradient

An alternative to example (ii) that is easier to interpret is to
only specify the concentrations at the near polar regions and deduce the
transports assuming that all immediate sources are zero., In other words
for the 10 zone case, the set g is restricted to the surface layers of
zones 1,2,9 and 10. At these grid points the concentrations are given by

(5.3).

The results are shown in Figure 5.2c¢ and it will be seen that
even is this case there is a significant seasonal component, varying by
+30% about the respective means. Thus even on a pole-to-pole basis there
is still a significant seasonal component to the transport.

(iv) Change of stream functions

As the first of a series of tests of the sensitivity of the
calculations the stream functions derived from the work of Oort and
Rasmussen (1971) were replaced by stream functions derived from Oort
(1983). (The actual data sets, i.e. the spectral coefficients, are listed
in Appendix B). This resulted mainly in small changes to the source
strengths that were derived although in the northern hemisphere near the
peaks of the release the rates differed by as much as 0.2 Gt/yr.

v Change of K
(v) g pp

In this run the K _ was multiplied by 1.5. In order to ensure
stability the time step hadPBo be reduced and a step of 0.001 years was
used. Apart from these changes, all details were the same as for the
standard case (i) above. The changes to southern hemisphere releases were
relatively small but the rates of the northern hemisphere releases (and
uptakes) increased by as much as 1 Gt/yr near the peaks.

(vi) Change of X
) g vy

In a test simlilar to case (v) all the K__ values were multiplied
by 1.5 (and again the time step of 0.001 years wad used). This change
tended to affect the gource strengths in both hemispheres as might be
expected. The changes were up to 0.2 Gt/yr.

(vii) Higher frequency

In order to test the sensitivity of the results to some of the
less regular variations in the seasonal cycle a release rate of

C(y,t) = [1.25 - 1.75 cos (qy*)] sin 4yt (5.4)
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Figure 5.3: Source strengths for release (5.4) with period 6 months

(a) Southern zones; (b) Northern zones,
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was used, The amplitude was half that of the standard case so that these
two cases would have the same amplitude for the time derivatives and so the
degree of attenuation of source signals by the transport terms could be
compared directly with that in case (i).

The results are shown in Figures (5.3a,b) and they suggest a
relatively low damping of higher frequencies indicating that the transport
terms play a relatively small role and that a large part of the seasonal
signal is due to local sources.

(viii) Isolated perturbation

In order to perform a more direct test of the sensitivity of the
sources to the observations in the concentrations we consider an isolated
error term defined by

It

C(y,t) 0.5 cos (2wt) . for zone i (5.5)

0 otherwise .

1l

As an example Figure (5.4) shows the source strengths corresponding to an
isolated perturbation in zone 7.

Again the results indicate a relatively localised influence of

the errors in concentrations. It is only the large scale features that
combine with the transports to influence the global-scale distributions.

(ix) Changing resolution

The final numerical test of the technique involved taking the
standard source (5.la) and using a horizontal resolution of 20 zones. The
time step was reduced to 0.001 years to ensure stability. It was found
that the combined source strengths for pairs of zones in the 20 zone case
agreed very well with the corresponding strengths in the 10 zone case.

6. Conclusions

The results presented in the previous sections have shown that
the computational techniques described in Section 3 provide a useful
method for solving many of the 'source-deduction' problems that arise in
connection with the analysis of seasonal variations of CO,. The technique
provides two major improvements over the approach used by Pearman and Hyson
(1980). Firstly it gives a direct solution rather than having to rely on
ad hoc fitting procedures and secondly it allows a separation of the
atmospheric modelling from the ocean modelling so that a wider range of
combinations of models can be considered.

As mentioned in the introduction there are a number of other
source deduction problems that have the same mathematical structure,
notably the deduction of surface sources of methane given surface
concentrations and rate coefficients for the atmospheric sink. The
analysis of Section 2 was used to define sufficient conditions for the
existence of the unique solutions that can be found using the computational
techniques from Section 3. There will however be more general (e.g.
non-linear) problems for which the techniques of Section 3 will give a
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Figure 5.4: Source strengths due to isolated perturbation described by

(5.5), with the non-zero concentration occurring in zone 7.
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solution even though the proofs of existence and uniqueness are lacking.
Of course for non-linear problems it is not possible to subtract off the
constant part of the concentration field as was done in the examples in
Section 5.

The main examples have concentrated on cases when the grid points
are divided into surface points and others so that the surface sources were
to be deduced given the concentrations at all points on the surface.
However, as indicated by the general formalism of Section 3 and by example
(iii) of Section 5, other divisions of sites can be used equally well if
the appropriate information is available.
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Appendix A : Green's function formalisms for conserved tracers

Conserved tracers are those for which the total amount of tracer
remains constant when there are no sources, i.e.

9 = =
; 1 m, Ci ;. m, Aij Cj 0 (A.la)
ij ~
for all distributions Cj
i.e. 5, m, Aij = 0 for all j (A.1Db)

where the m, are the atmospheric masses associated with grid point i,
assuming that the Ci are in concentration units.

The set of equations is reduced by selecting an arbitrary grid
point N and applying the constraint

mNCﬁ = - 3'm, C. | (A.2)

where the ' sums exclude grid point N.
For 1 # N
—_— = = ' - i
C, § A,, C, + 85, § Aij AiN mj/mN Cj + Si (A.3)

This set of equations, together with the constraint (A.2) is only
equivalent to the full set of equations if

3 =
ot [z m ci] Iomy Aij C, +zmy S, (A.4)
ij
= 0 (A.5)

i.e. T m, S,
i i

Thus if the constraint (A.2) holds at any initial time and if equation
(A.5) holds then the reduced set of equations (A.3) gives the same
solutions as the full set of equations. However, under these conditions,
the full set of equations has no non-zero solutions when the sources are
zero because the 'constant concentration solution is excluded by the
constraint and so the reduced set of equations can have no non-zero
solutions and a Green's function will exist for the reduced equations.
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Appendix B : Sets of transport coefficients used in this study

Each set of transport coefficients is expressed in spectral form as a sum
of terms of the form:

%
Cijk 8i(P) 8 (y*) gk(Zt) where

p = reduced pressure, (range 0 to 1)
y* = k(1 + sine (latitude)), (range 0 to 1)
t = time in years
and gn(x) = cos (n™x), n 20
= sin (~-nTx), n < 0
The tables list sets of 1, j, k, Ci' in order of decreasing magnitudes of
C,., so that a natural reduction in”resolution of the transport fields can

ba- achieved by taking some smaller number of terms from the beginning of
the lists. The fields K, K are slightly different - the coefficients
are still in the same,fogg but’ are given in pairs so that truncating these
sums after any even number of terms gives a sum that satisfies the boundary
conditions described in Section 4. (The boundary conditions of ¥ and X

are satisfied automatically by each term because sine series are used).py
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(1)

Stream functions from Oort and Rasmussen (1971) 100 terms:
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. 19746E+00
. 16083E+00
. 14045E+00
.91587E-01
.82463E-01
.72202E-01
.56330E-01
.53881E-01
.50295E-01
.48426E-01
.44249E-01
,43824E-01
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.40581E-01
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.38288E-01
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.33376E-01
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. 27097E~01
. 24839E-01
.23968E-01
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(ii) Stream functions from Oort (1983) 100 terms:
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.28241E-01
.26550E-01
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.24958E-01
.23635E-01
.22804E-01
.22763E-01
.22752E-01
.20734E-01
.20512E-01
.19474E-01
.19159E-01
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.18700E-01
.17829E-01
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.14418E~01
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. 14208E-01
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. 13829E-01
.13232E-01
.12700E-01
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.12349E~01
.12022E-01
.11638E~01
.11262E-01
.11025E-01
.10699E-01
.10491E~01
. 10428E-01
. 10428E-01
.10230E-01
.10132E-01
.99405E-02
.99047E-02
.97337E-02
.95149E-02
. 94855E-02
. 94728E~02
.93311E-02
. 93295E-02
.92994E-02
. 92559E-02
. 91002E-~02
.89988E-02
.89776E-02
.89250E~-02
.89089E-02
. 88972E~-02
.88908E-02
.88527E-02
.87543E-02
.84912E-02
.84275E-02
.83245E-02
.82965E-02
.82459E-02
.81531E~02
. 78723E-02
. 78436E-02
.77931E~02
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from Hyson et al.

(1980) 88 terms:

0 0 0 .52043E+00 3 4 0 .88604E~-01
0 2 0 .52043E+00 3 6 0 .88604E-01
0 2 0 .64751E+00 3 1 1 .84337E-01
0 4 0 .64751E+00 3 3 1 .84337E-01
0 1 I L44722E+00 1 6 0 .83050E-01
0 3 1 LA44722E+00 1 8 0 .83050E-01
0 4 0 .40528E+00 3 6 0 .76992E~01
0 6 0 . 40528E+00 3 8 0 .76992E-01
0 1 -1 . 34253E+00 4 0 0 .70522E~01
0 3 -1 . 34253E+00 4 2 0 .70522E-01
0 3 1 . 33490E+00 4 2 0 .91912E-01
0 5 1 .33490E+00 A 4 0 .91912E-01
0 6 0 . 30682E+00 3 3 1 .67362E-01
0 8 0 . 30682E+00 3 5 1 .67362E.01
0 3 -1 -.26468E+00 3 1 -1 .65277E-01
0 5 -1 . 26468E+00 3 3 -1 -.65277E-01
0 8 0 .23272E+00 3 8 0 -.65136E~-01
0 10 0 -.23272E+00 3 10 0 .65136E-01
1 0 0 . 21747E+00 4 4 0 -.61635E-01
1 2 0 ~-.21747E+00 4 6 0 .61635E-01
1 2 0 .23940E+00 4 1 1 .60776E-01
1 4 0 ~.23940E+00 4 3 1 ~.60776E-01
0 5 1 -.17872E+00 1 8 0 .55921E~01
0 7 1 .17872E+00 1 10 0 -.55921E-01
1 1 1 -.17681E+00 3 3 -1 .53509E-01
1 3 1 . 17681E+00 3 5 -1 ~.53509E-01
0 5 -1 -.15138E+00 4 6 0 ~.52747E-01
0 7 -1 . 15138E+00 4 8 0 - .52747E-01
1 1 -1 -.13482E+00 5 2 0 .51074E-01
1 3 -1 . 13482E+00 5 4 0 -.51074E-01
1 4 0 .12874E+00 5 4 0 .94121E-01
1 6 0 .12874E+00 5 6 0 .94121E-01
0 7 1 . 12652E+00 5 6 0 .12799E+00
0o 9 1 .12652E+00 5 8 0 .12799E+00
1 3 1 . 12100E+00 5 8 0 .13292E+00
1 5 1 .12100E+00 5 0 0 . 13292E+00
0 7 -1 .11337E+00 1 5 1 .49400E-01
0 9 -1 .11337E+00 I 7 1 .49400E-01
3 0 0 .95577E-01 4 3 1 . 48464E-01
3 2 0 .95577E-01 4 5 1 .48464E~01
3 2 0 -.13131E+00 4 1 -1 .47010E-01
3 4 0 .13131E+00 4 3 -1 ~.47010E-01
1 3 -1 -.95169E-01 3 5 1 .45877E-01
1 5 -1 3 7 1 ~.45877E-01

.95169E-01
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based on Hyson et al,
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(1980) 50 terms:

.22327E+00
. 12942E+00
.12114E+00
. 10468E+00
. 98400E-01
.96935E-01
.86466E-01
.85467E~01
.81963E-01
.80796E-01
. 76309E-01
.71358E-01
.63491E-01
.53926E-01
.50057E-01
. 48010E-01
.44883E-01
.42705E-01
.39980E-01
.39376E-01
+39355E-01
.39048E-01
.39016E-01
.37917E-01
.33210E-01
. 30968E-01
.30740E-01
.29668E~01
.29213E-01,
.27490E-01
.27094E-01
.26787E~01
.25570E-01
.25382E-01
.24711E-01
. 24237E~01
.22870E-01
.22186E-01
.21134E-01
. 20968E~01
. 20535E-01
.19546E-01
.19001E-01
.18672E-01
.17348E-01
.17261E-01
. 16885E-01
.16617E-01
.16398E-01
.15847E-01
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(v) K based on Hyson et al. (1980) 86 terms. Note that to this order of
aggroximation there is no seasonal variation. '
0 0 0 .12969E+01 1 10 0 . 14377E+00
1 0 0 .12969E+01 3 4 0 .12631E+00
1 2 0 .82171E+00 4 4 0 .12631E+00
2 2 0 .82171E+00 3 5 0 .12564E+00
3 2 0 .79664E+00 4 5 0 . 12564E+00
4 2 0 . 79664E+00 1 7 0 .12525E+00
1 0 0 . 77360E+00 2 7 0 .12525E+00
2 0 0 .77360E+00 2 7 0 .15291E+00
4 2 0 . 52048E+00 3 7 0 .15291E+00
5 2 0 . 52048E+00 0 7 0 .12242E+00
2 2 0 .31706E+00 1 7 0 .12242E+00
3 2 0 .31706E+00 1 7 0 .12242E+00
3 2 0 .31706E+00 2 7 0 L12242E+00
4 2 0 .31706E+00 2 7 0 .12242E+00
4 2 0 .31706E+00 3 7 0 .12242E+00
5 2 0 .31706E+00 3 9 0 .11958E+00
0 5 0 . 30477E+00 4 9 0 .11958E+00
1 5 0 . 30477E+00 0 3 0 .11053E+00
3 0 0 . 27748E+00 1 3 0 .11053E+00
4 0 0 .27748E+00 1 3 0 .11053E+00
0 4 0 . 25849E+00 2 3 0 .11053E+00
1 4 0 . 25849E+00 2 3 0 .14315E+00
1 4 0 .29910E+00 3 3 0 .14315E+00
2 4 0 .29910E+00 3 3 0 .14315E+00
0 8 0 .23772E+00 4 3 0 . 14315E+00
1 8 0 .23772E+00 4 3 0 .14315E+00
0 6 0 .23104E+00 5 3 0 - .14315E+00
1 6 0 .23104E+00 2 9 0 .10813E+00
3 3 0 . 22483E+00 3 9 0 .10813E+00
4 3 0 . 22483E+00 3 9 0 .10813E+00
4 0 0 .22281E+00 4 9 0 .10813E+00
5 0 0 .22281E+00 4 9 0 . 14449E+00
1 5 0 .21825E+00 5 9 0 . 14449E+00
2 5 0 .21825E+00 4 1 0 . 10453E+00
4 3 0 . 18602E+00 5 1 0 .10453E+00
5 3 0 . 18602E+00 2 6 0 .99772E-01
1 3 0 . 18190E+00 3 6 0 .99772E-01
2 3 0 .18190E+00 3 6 0 .15028E+00
3 1 0 .17105E+00 4 6 0 . 15028E+00
4 1 0 .17105E+00 4 6 0 .11191E+00
1 1 0 . 14775E+00 5 6 0 .11191E+00
2 1 0 . 14775E+00 2 0 0 .98169E~-01
0 10 0 .14377E+00 3 0 0 .98169E-01




