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Abstract

Constrained inversion techniques can provide a useful approach to the
problem of estimating the parameters of geochemical models. These techniques
can be approached in various ways which make differing statistical assumptions
and which lead to different expressions for the parameter uncertainties. For
models based on well-defined geophysical concepts, Bayesian analysis provides
an appropriate way of using additional geophysical information in the model
calibration process.




1. Introduction

The difficulties of calibrating and validating geochemical models are
one of the major limitations to the use of such models in making plausible
predictions of geochemical changes. Frenkiel and Goodall (1978) have
commented that 'systematic methods of approaching model estimation and
validation have not received much attention in the simulation literature'.
This is particularly true when considering attempts to evaluate the
uncertainties in the model calibrations. This report is a compilation of a
number of different statistical approaches that are relevant in model
calibrations. The main emphasis is on statistical techniques for evaluating
estimates from constrained inversion calculations, in particular for the case
in which a constrained inversion formulation is obtained on the basis of a
Bayesian statistical analysis. Constrained inversion formalisms have been
used in a number of geophysical contexts, such as remote sensing of atmospheric
properties, interpretation of seismic data and ocean transport studies, (see
Twomey, 1977 for a review of techniques and some examples of applications).

A similar technique called 'ridge regression' has been described by Hoerl and
Kennard (1970a,b). There have been a few studies in which such techniques have
been obtained on the basis of a Bayesian statistical approach, as for example
in the work of Whitney, (1977), Kuczera, (1982) and Bretherton et al. (1983).
More recently inversion techniques have been applied to geochemical studies,

as in the work of Bolin et al. (1983) in ocean geochemical transport,

Fraser et al. (1983) and Enting (1983) in global carbon cycle modelling.

) The constrained inversion formalisms are introduced in problems that are
under-determined or at least ill-determined. The ways in which these under-
determined aspects arise have been described in connection with the various
applications listed above, and also to some extent by Twomey, (1977).

Section 2 below describes the general mathematical framework within which the
estimation problem is expressed. Section 3 describes a number of different
statistical interpretations that can be applied to the results of the
estimation procedure. Section 4 applies some of the most useful of these
approaches to the problem of determining the sensitivity of model predictions
to the uncertainties in the model calibration. The notation is defined in an
appendix.

2. Parameter Estimation

In abstract terms, the calibration problem for geochemical models can be
expressed as follows.

The model is defined in terms of a set of K parameters, x , k = 1,X
The values of these parameters are not known precisely and have to be
estimated by matching the predictions of the geochemical model to measurements
of observable geochemical quantities. The various measured quantities are
denoted m., j = 1, J and the model predictions for these quantities are
denoted y?(x), indicating that the yj are functions of the whole set of X

The problem of determining the x, from the m, is often under-determined
or at least exceedingly ill—determineé. Constraided inversion formalisms
(Twomey, 1977) are designed to obtain estimates by supplying additional
assumptions. Examples of the additional requirements that are assumed are

(i) minimal solutions i.e. solutions that minimise the x. so as not
to have the values any larger than what is required gy the m,.
]



(ii) smoothest solutions. This is applicable when the x, described the
expansion of a function in terms of a set of basis? functions. The
aim is not to include in the function any 'structure' that is not
required by the data.

(1ii) smallest deviation from some initial solution. The idea is to
take an initial solution and to make only those changes that are
necessitated by the mj.

(iv) minimum magnification of errors - following Backus and Gilbert
(1968, 1970).

In each case the fit that is selected is a compromise between fitting the m,
and satisfying the additional assumptions. A simple mathematical form that
is commonly used 1s to estimate the Xk by minimising 6 where

J K

_ - 2 : _ 2
g = jél (yj (>~<) mj) + Y kél (xk qk) (2.1)

where the set of g, , k = 1, K represent the initial solution described in case
(iii) above. Case (i) corresponds to all the g, being zero and case (ii) (i.e.
minimum derivatives rather than minimum functions) can be transformed into
case (i) by changing the definitions of the parameters. In inversion
formalisms the parameter vy is regarded as adjustable and is varied to produce
stable estimates of the x,. Since vy is an arbitrary quantity, a desirable
class of solution is that'in which the solution is insensitive to the value of
Y over some reasonably wide range. If the solution changes abruptly as vy
changes it can indicate incompatibility between the two solutions defined by the
m, and g, respectively in that minimising 6 will lead to values near one or
other of the limiting solutions except in a narrow unstable region where the
solution is unlike either limit. A small variation with y can indicate the
existence of a broad range of compromise solutions all of which fit both sets
of information to a similar extent (see Twomey, 1977).

In order to assess the uncertainties in the estimation procedure, some
knowledge of the uncertainties in the measurements is needed.

Initially we assume

) + € (2.2)

T yi(i{true Jj

i
where Ej represents the known uncertainty in the observations. In the analysis

that follows this is taken as being normally distributed although much of the
analysis (especially the desirability of using a least square fit) does not
depend on this assumption.

A more common situation is to have

) +n, + €, (2.3)

m, = y,{X
y1<~true 1 1

1

where the n, represent errors due to the mismatch between a geographically low-
resolution "~ lumped model value of y, and a value of m, based on the mean of a

small number of samples. In some cases, such as the Satchment models considered
by Kuczera (1982), the ni can be reasonably regarded as random effects and
absorbed into the e,. In geochemical models such as the carbon cycle model

described by Entingland Pearman (1982, 1983) the n, may represent non-random
1




biases due to covariance effects in non-linear model processes. As pointed

out by Enting and Pearman, (1982, §2) this type of effect can sometimes be
described by the use of 'effective parameters' that differ from the simple

mean values of parameters that show spatial and temporal variation. In any
case the initial analysis proceeds on the assumption that the errors are random
as indicated by (2.1). when spatial or temporal variations are large, the
cautious approach is to follow the suggestion of Bolin et al. (1981) and use
the range of variation as a measure of the variation of the m, .

Once the variances have been estimated, the observations are scaled so
that the variance of each of the €, is equal to 1. 1In terms of the least
squares fit, this procedure is equivalent to using a weighted least-squares
procedure with the weights chosen so as to minimise the variance of the
parémeter estimates (Deutsch, 1965).

It is also necessary to define some choice of scale for the x, and g, in
the case v # 0. 1In the applications considered here, it is assumed that there
is a realistic estimate g , for each x, and also that there is a knowledge of
the uncertainties. This approach is particularly applicable in models such as
the carbon cycle model described by Enting and Pearman (1982, 1983) which was
specifically designed so that each parameter represented a well-defined
geophysical quantity.

The Bayesian analysis (Box and Tiao, 1973) takes this approach one step
further by treating the parameters as random variables so that the g,  and the
variance are obtained from a prior distribution that represents what is known
about the parameters before the model is fitted.

Because of the conceptual differences between the Bayesian and the
conventional (sampling theory) approaches to estimation, it is important to
specify the meanings of the various quantities in each context.

Each approach produces a set of parameter estimates, denoted X, which are
obtained by minimising the function 6 defined in equation (2.1). ~

Sampling theory treats R as being a vector of random variables since the

components are functions of the random variables ¢,. The quantification of
J

uncertainties consists of specifying the way in which the vector % is

- distributed and this specification is most useful when we specify the

distribution of R around the 'true' parameters x , by specifying the

true

distribution of the difference d where

d = 2 -Xx (2.4)
- - ~true

Confidence intervals obtained from the distribution of d, must, strictly

speaking, be interpreted as glving probabilities that particular ranges of &

values would be obtained, assuming that x was actually equal to the

computed X. true

In contrast, the Bayesian analysis takes x as being unknown and

~true
describes its possible values in terms of probability distributions that




describe the amount of information that we have about Xtrue both before and

after using the m,. Thus Xe ne is treated as a vector of random variables but
i ~tru

% is not a random vector because the analysis is concerned with the information
dbtained from a single set of measurements: the mj and the Ej are fixed by
making the observations.

The uncertainties in the Bayesian analysis can again be described by
the vector d defined by (2.4) but in this case the distribution of d measures

the distribution of the unknown Xtrue about the estimate X.

The analysis in the following section is based on linearising the model,
using the sensitivity matrix S where

ayj
S, = = (2.5)
k
J an
The sampling theory analysis linearises about the unknown X ue giving
= + 2.
Yj(%) yj(ftrue) i Sjk dk (2.6)
as in equation (3.1).
The Bayesian analysis linearises about £ giving
= %) - L S, 2.
yj(ftrue) yj(f) Sjk dk (2.7)

as in equation (3.23).

3. Quantifying the uncertainties in parameter estimates

As indicated in the previous section, there are a number of different
points of view from which the constrained inversion formalism can be approached.
Although several of the approaches that have been described lead to the same
estimates for the parameter values, the different statistical assumptions lead
to different expressions for the uncertainties in these estimates and to
different statistical tests required to test the validity of the estimation
(see Deutsch, 1965).

(a) The use of observations only, assuming known variance

The use of only observations implies y = 0 and so
J
6= I (y.(&) -m,)?
j=1 33 J
= I (Is.,d -c¢€,)? (3.1)
; k "k g
j ok J J

The minimum of 6 is given by dk which is the solution of

L 8., S. d = L S, €.
, k k' "k X k
ik J J j X7
(3.2)




whence a. = .i' Ckk’sjk'ej (3.3)
J

where the matrices C and V are defined by

- 3.4
Yk L8485 (3.4)
J
-1
and cC =V . (3.5)
Using this solution, § can be re-expressed as
= 3.6
0 0 in T Q (3.6)
where 0 . = I(y.(x) - m,)? (3.7)
min joL j
- 3.8
and @ s % S5k Sike Y (3.8)
If var (e,) = 02 for all 3
J
then 6 , is distributed as OZX 2
min v
where
v = J-K . (3.9)

This means that a X2 test (with v degrees of freedom) can be applied to the value
of 0 n to see if the model gives a statistically significant fit to the data.
mi

Note that from 3.2,

= i.e. = .10
E{dk} 0 i.e E{f} X e (3.10)
and E{(xk - xk)(xm - Xm)}
= Z E{C ’S' |€ C t L | |€ ’}
K'm'gq kk'"jk mm' "3 'm'
= Z Ckklc IS'kIS |m|026 1
m'k' ] J J 3]
_ 2
Chn® . (3.11)

. T . . .
Thus C, the inverse of V = 5§73, is the covariance matrix for the parameter
estimates if o? = 1, i.e. if the scaling assumed in section 2 is correct. If |

the errors are normally distributed, the dk will have a multivariate normal

distribution.

Confidence intervals on the K parameter distribution of d_ are defined by

k

Q(d) = & a v, d,<x* (Ka) (3.12)
- kk'

with probability 1 - a.




(b) Only observations used, variance assumed unknown (see Deutsch, 1965)

This case corresponds to the most common situation in regression analysis.
It is assumed that the errors €. have (after scaling) a common variance 02 but
that this variance is unknown. JThe value of 6 ., can be used to estimate a2
or, as below, used directly in the specificatigﬁnof the distribution of
parameter estimates. Thus it is not possible to use the value of 6 ., obtained
from a single f£it to assess the validity of the estimation procedure. What can
be done is to take the values of 6 ., obtained using different numbers of
parameters fitted and apply the 'FT%gst‘ to see whether the improved fit that
is obtained using the larger parameter set can be regarded as a statistically
significant improvement. (Note that the validity of the F-test depends strongly
on the normality (and particularly on symmetry) of the error distribution).

Both the joint distribution of the parameter estimates and the various
marginal distributions are given by (multivariate) t distributions as defined
by Box and Tiao (1973), equations 2.7.20, 2.7.22. Ellipsoidal confidence
regions with probability l-a are defined by

(T-x) 0 (d)
T = PF(K,J-K,a) (3.13)
min

where F(K,J-K,a) is the upper 1000 percentage point of an F distribution
with (K,J-K) degrees of freedom.

This form of parameter fitting is intuitively appealing because of its corres-

pondence to conventional regression analysis. In the geochemical modelling
context, it suffers from the defect that it throws away the possibility of using
8 . to check the model validity and that it relies on the assumption that the

min . . .
de%ects in the fit can be treated as though they were due to random errors in
the data rather than oversimplification in the model.

“{(c) Constrained inversion with uncertainties determined only by observations

The conventional approach to constrained inversion (Jackson, 1972, Twomey,
1977) treats the parameter determination problem in terms of vector spaces and
defines two subspaces within which the parameters are adequately determined and
undetermined respectively. The error analysis concerns the uncertainties within
the 'adequately-determined' space. The under determined subspace is dealt with
by taking a single representative vector. This is chosen on the basis of
additional assumptions which are not generally analysed in statistical terms.
Since only part of the uncertainty is analysed, this treatment is not
particularly suitable for geochemical modelling studies and so only a brief
summary is given here.

The assumption is that the additional constraints represented by the
e represent the 'true' parameter values, so that

6 = (s, 4 - e.)? + yra? (3.14)
. kk )
5k ) J k ¥
This assumption is strictly quite unrealistic but it can be regarded as an
approximation to the situation in which the g represents a better approximation

to the X e than can be obtained from fittifig only the observations as in

section 3a, above.




Minimising 6 with respect to the dk gives

s..8... + vyI.. )d = I S,.¢€
( ij ig! iy ij73
= . 3.15
or z ka,(y)dj ; Sijgl ( )
k 3 .
or d, = I C..,{Y) 5. .€, (3.16)
J v J3d 1) 1

where V(y) and C(y) its inverse, are the generalisations of the matrices V,C
in the y = 0 case above. The matrix C(y) can be regarded as a constrained
inverse of V(0). The constraint acts primarily on the subspace of parameter
space spanned by those eigenvectors of V(0) that have eigenvalues A £ v.
Since the parameter variability in a particular eigenvector directibn is
proportional to A "l arbitrarily replacing all eigenvalues X by X + v,
i.e. using C(y) rither than C(0), artificially reduces this vgriabiEity.
This approach does not give quite the sharp, distinction between the
'adequately determined' and 'undetermined' subspaces that is implied by the
introductory remarks of this section. The sharp distinction is associated
with the procedure described by Jackson (1972, section 5) which replaces
Al by O if A < t for some threshold t, rather than replace X 1 by

19(AU +v) for'all y. M

Using equation (3.14) above gives

E{dkdk'} - E{mi, Ckm(Y) Cm'm'(Y) Sim Si'm' Eigi'}
ii?
— 2
= a0 Z' Ckm(Y) Cm,m,(Y) me,(O) . (3.17)
mIm

This will tend to decrease with increasing y, corresponding to reduced
uncertainty associated with reduced resolution in the terminology of
Jackson (1972).

As mentioned above, this formalism is not particularly appropriate for
geochemical modelling studies as it only considers a restricted class of
uncertainties. In particular it takes g as being, for the purposes of error
analysis, unbiased estimates of the trué x. This aspect is explicitly
addressed by Hoerl and Kennard (1970a,b) who described an equivalent formalism
(ridge regression) for the purpose of reducing instabilities at the expense of
a possible bias.

(d) Direct Bayesian inference (see Box and Tiao, 1973)

The direct form of Bayesian inference takes the ranges used in the
scaling as giving a literal interpretation to the probabilities. Once the
variables are scaled as defined in section 2 the literal interpretation of
the probabilities requires that y = 1. This is because the Bayesian
formalism begins by treating both the observations m, and the parameter
values X, as random variables and uses the distribution defined in the appendix.

P(m,x) = Pm|x)P(x) = P(x|m) P(m) (3.18)

whence, for a fixed set of measured values m,




P(x|m) « P(m|x) P(x) (3.19)
The assumptions are that
1 _ 2
P(f) « exp (-% Z(xk qk) ) (3.20)
k
and P(m|x) « exp (=% T (v, (0 - mj>2> : (3.21)
-~ 5 -

The mode (most probable x) of the posterior density function P(x|m) is thus
given by the £ that minimises T

8 = S(x. -qg )2+ I(y.(x) - m,)? . (3.22)
k k . ] J
k ]
Linearising about the minimum gives
8 = 0 + % I (x ; ) 078 (% ; ) (3.23)
- : it - e N T 1 .
min Kk k k axkaxk, k k

so that in this approximation, P(x!m) has a multivariate normal distribution

with the inverse covariance matrix

320
v,. (1) = ——/— = I,.., + L S. 5., (3.24)
ij Bxkaxk, kk ; jk ik
The goodness of the fit i.e. the value of 6 , , plays no role in

determining the uncertainties at this stage of tﬁénanalysis. The goodness of
fit is however involved in testing the validity of the fit, as in section 3a
above. The main tests of validity involve testing the compatibility of the
prior information, P{x), with the model results P(m’x) to see if the assumption

that there is a single x that is compatible with both sets of information is
statistically acceptablég,

Kuczera (1982) uses the parameter estimates obtained from two independent
sources as a basis for measuring compatibility. In the present context the two
sets of parameter estimates are the prior, for which x~g is assumed to be

multivariate normal with a unit covariance matrix, and the unconstrained least
squares (see section 3a) for which x—Xo is assumed to be multivariate normal
with covariance matrix C(O). "

The random vector of differences will be distributed about x -g with a

multivariate normal distribution with covariance matrix I + C(0). This is
regarded as consistent with a difference of O i.e. consistent parameter
estimates if ~

~ -~

é = I (% (x

_ 2
g ok G Wyge (3.25)

ok’ T T S X g
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with confidence level l-a. The matrix W is the inverse of I + C(0), and
formally, diagonalising V(0) as

V.. = L R, A R, (3.26)
ij a 1 a Jo
] = -1 3.27
gives Cij g R, A, jo ( )
W.., = LR, (L+2xr HIgr
ij o ia o jo
= LR, (A /(1 + X)) R, (3.28)
a ioa o ja

so that W is well-defined, even if some of the Aa are effectively zero, by

wo= [T+v 1Tl o= viz+viTl o= v o) . (3.29)
Note that if the components of eigenvector B are RjB and if AB = 0 and X is
replaced by x K + R.B then the value of Q is unchanged. The compatibility
o

test can be applied using any vector lying in the underdetermined subspace or

more generally it can be approximated using any good approximation to XO in

~

the cases for which small AB lead to the precise value of Xo being difficult
to determine.

(e) A Bayesian interpretation of vy » 1: redundant observations

The Bayesian analysis in the previous section was based on the assumption
that the variances of both the observations and the prior estimates were known,
and had been scaled to one (and that the covariances were zero). The use of
Yy # 1 implies that these assumptions are inadequate. It is in principle
possible to use a Bayesian analysis to estimate one or both sets of variances
but in practice, for non-linear estimation, the computational difficulties are
considerable. If however a value of Y # 1 is selected, using one of the
criteria described by Twomey, 1977, it may still be possible to interpret the
results in Bayesian terms and apply the appropriate generalisations of the
results given above.

The main possibility for inappropriate variance estimates arises from the
degree of subjective judgement that needs to be applied. Bolin et al (1981,
section 1.2.3) suggest that the appropriate variance measure of lumped data
describes the variability across the whole geographical range rather than the
variance of the mean value. In terms of the notation of section 2, this is an
attempt to estimate the uncertainties due to the errors n.. Such an approach
can lead to a requirement for y > 1 in at least two ways.l

The first possibility is that the estimates of the variances of the prior
values have, in order to avoid excessive constraints, been set too high, and
should be scaled down by a factor of Y.
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Thus (3.20) is replaced by

P(x) « exp (~hy I(x )2) (3.30)

-4
~ K k k
and Vv (y), C(y) replace v(l), C(l) throughout the analysis of the previous
section.

Alternatively, values of y > 1 may be appropriate if the observations m,
do not have independent errors. With a series of similar measurements such
as successive measurements at yearly intervals, the errors arising from
experimental technique will usually be independent and, if the spacing is
sufficiently large, errors arising from environmental variability will also
be independent. However errors arising from effects such as calibration
uncertainties, or the fact that the set of observations does not adequately
represent a quantity with spatial or temporal variability will not usually be
independent. In terms of the notation of section 2, if Ei includes only
measurement errors they may be independent, but if they are required to include
the errors n, associated with spatial variability, this independence may be
lost. The ude of v > 1 would be appropriate when this type of error dominates
so that, for the purposes of fitting the model, the mi represent a number of
equivalent measurements, and an improved approximation to P(me) would be

P(m|x) « exp (~%y iy, () - m)%) (3.31)

This results in the distribution P(xlm) being multivariate normal with
inverse covariance matrix (or precifidn matrix)

viy) = 1+ 7y !c . (3.32)

This use of y to reduce the significance ascribed to the observations is most
likely to be appropriate in calculations such as the fluorocarbon inversion
described by Fraser et al. (1983) and Enting and Fraser, (1983) in which all
the observations are measurements of the same quantity at various places and
times. When a number of different types of observation are involved, the
adjustment of their significance by changing a single number y must be
regarded as a crude first approximation. 1In any case, if the results of the
analysis appear to be in disagreement with the statistical assumptions that
are used in the model calibration, the estimates and residuals should be
examined in detail with a view to determining the inadequacies and refining
the model and/or the calibration procedure.

In spite of the limitations of this interpretation of values of vy > 1,

the use of V(y) as an inverse covariance matrix for the parameter estimates
does appear to agree with the usual interpretation of the inversion
calculation., For very large vy, the fit is determined by the prior estimates
of the parameters and it is the uncertainties in these estimates that is
reflected in the final uncertainties. For y = 1, the expression (3.32)
agrees with the direct Bayesian analysis that gives an optimal combination
of both sets of information.




12

(£) Weighted least squares

It is of course possible to regard both sets of variances as correct and
simply treat the use of y # 1 as a (non-optimal) weighted least-squares fit.
Treating both the m. and the qk as independent random variables with variance

i

1 leads to

2
= + 3.3
Cov (dk,dm) }fm' Ckk,(Y) SLD! [Vk,m,(O) Y Ik'm'] ( 3)
which is the multivariate generalisation of the univariate weighted least
squares result that

var (d) = (J + v2K)/(J + vyK)? ) (3.34)

When the relative weighting of subsets of J and K observations are given
the weighting J and K observations are given the weighting 1 : y, the minimum
variance occurring at y = 1. While expression (3.33) covers the full range
from using purely prior information (y - «) to the direct Bayesian (y = 1)
use of all information through to using only the m, (y = 0) and gives
the appropriate covariances in each case, expression (3.33) relies on the
assumption that each of the scaled variances is equal to 1. Evaluating (3.33)
can be useful to show how vy = 1 gives estimates of lower variance than other
y values but if a value v # 1 is used for obtaining final estimates then the
implication is that the assumptions on which (3.33) is based are in fact

incorrect.

4, Sensitivity Analysis

This section considers the extent to which uncertainties in the parameter
estimates are reflected in the uncertainties in predictions made by the model.
The analysis will be confined to the case of Bayesian analysis with possible
data redundancy (as in section 3e above). The standard Bayesian analysis
(section 3d) is just a special (y = 1) example of this general analysis while
if the Bayesian analysis with over cautious prior variances is encountered,
the analysis should be reinterpreted in terms of a standard Bayesian analysis.
The analysis for y = O is a conventional least-square analysis and the
sensitivity analysis for a carbon cycle model is described by Enting and
Pearman (1982, 1983).

From equation (3.32) the deviations dk have a multivariate normal

~ ~ =

distribution with covariance matrix C(y) = V(y) Additionally a single dk

deviation has a normal distribution with variance Ckk' The quantity 6 can
be approximated by

B8 = 6
min Y ikdk ka' dk' i (4.1)




The quantity 6% = 6 - 8¢dj . (4.2)

in which 8¢ acts like a Lagrange multiplier, is minimised when

26 * - B
e i%yvkk,dk,— s¢1ji = 0 (4.3)

or, on multiplying both sides by C,

_ 98
dk = 2y ij (4.4)

*
so that the variance of d. can be obtained as 2Yv/¢B times the value of 4.
that minimises 0%, J J

If we consider a model prediction Z that depends linearly on one of
the parameters as

~

7 o= Z(x) + ij (4.5)
Then var (Z) = 82 var (dj)
and since
6* =86 - (2 - Z(;)), (4.6)

0 - ¢7Z is minimised by the value of x that has

. 9627
Z* - 7 = d.* = - — C,.
) g J 2y 733
2
= - %g»var (dj)
= - %;—var (2) (4.7)
or
var (2) = - %1—(2* - Z(;)) . (4.8)

Since this expression has removed all reference to particular vector
directions or matrix elements, it will be independent of the basis used
to define the parameter space and will apply to any function of the model
parameters that has an approximately linear variation about the best fit
point. This type of analysis has been applied to predictions of future
atmospheric COp concentrations by Enting (1983}).

13
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5. Conclusions

The main results of this report are the various variance/covariance
expressions listed in section 3. The range of different expressions shows
clearly that even though the different approaches to the inversion calculation
can lead to the same parameter estimates, the different statistical assumptions
lead to different expressions for the parameter uncertainties. The choice of
the most appropriate expression is a matter for the scientific judgement of
the modeller. When a sufficient amount of prior information exists, the
Bayesian analysis becomes particularly appealing because it formalises some
of the ideas that appear intuitively in other approaches. 1In addition, as
emphasised by Box and Tiao (1973) the Bayesian approach can be used in a
process of iterative model refinement as new information is obtained.

Acknowledgement A number of helpful discussions with Dr. P. Kabaila
and Dr. G. Kuczera are gratefully acknowledged.




Appendix:

Notation

P()

2

15

Matrix with elements C, ., oxr C,,(y) which gives covariance
of parameter estimates.- Equal to the inverse of matrix Vv, V(y).

Deviation of parameter Xy from best fit value Xy

Statistical expectation (mean) of quantity in brackets.
F statistic

integer index

Identity matrix, usually K x K

Number of observations, mj, to be fitted

integer index, usually range 1 to K

number of model parameters xk

Vector of observed values, components mj

Probability. Bayesian analysis uses a number of probability

distributions:
P{x): This is the prior distribution, describing the probabilities

of parameter values as assessed before any observations have been made.
P(m): The probability distribution for observing particular values

given the error distribution for observations and the probability
distribution of the parameters.
P(m,n): Joint probability distribution for a set of observed values

and parameter values.
P(m|x): Probability distribution for a set of observed values,

conditional on a specified set of parameter values. This is assumed
to be given by a multivariate normal distribution about the most
probable observations which are calculated by the model from a given
set of parameters.

P(g’g): The probability of the set of parameter values, given that a
set of observed values have been measured, i.e. the probability
distribution that describes the results of fitting the model.

Vector of prior parameter estimates, components =
Measure of deviations of parameter vector from best-fit.

Matrix used to diagonalise V

. dy .,
Sensitivity matrix, elements S, = —
jk Bxk

Threshold of significance of eigenvalues



parameter estimates

. T
Matrix yI + S°S
(1 + v 117! matrix used in testing compatibility of information

Vector of parameter values xi
Unknown vector of 'true' parameter values

Estimate of x , based on m and q.
true - <

Estimate of x based on m only
true

Vector of model predictions for the observable quantities
whose measured values are given by m

Used in sensitivity analysis to denote any quantity predicted
by the model

Probability level used in confidence levels
Scale factor used in calculating model sensitivity

Quantity describing the relative contributions of m and g to the

Errors in m - especially errors in observations

Function whose minimum defines the parameter estimates

Eigenvalue

Number of degrees of freedom in fit

Eigenvalue index

Additional errors in m due to effects such as non-representativeness

of measurements
Chi-squared random variable with v degrees of freedom

Value of sz corresponding to probability 1 - a.
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