Australian Tide Recorders

By B. V. Hamon

Division of Fisheries and Oceanography

Technical Paper No. 15

Commonwealth Scientific and Industrial Research Organization, Australia Melbourne 1963

Fig. 1.—Locality map. *Permanent installation, †Temporary installation, either operating at present, for a short period, or has operated in the past.
‡Details not available.

AUSTRALIAN TIDE RECORDERS

By B. V. Hamon*

[Manuscript received May 24, 1963]

Summary

Tide recorder stations within the Commonwealth of Australia and its Territories are listed and brief details are given of each tide gauge and its datum.

The aim of this publication is to make available a list of stations within the Commonwealth of Australia and its Territories at which tide recorders are being or have been operated, together with some information on each installation.

Most of the information presented was obtained from replies to a questionnaire circulated in October 1962 by the Hydrographer, Royal Australian Navy. The main part of this report is a reproduction, with slight editing and some additional comments, of the replies to this questionnaire.

Stations are listed in alphabetical order. A map showing station positions is included (Fig. 1). The questionnaire included space for a sketch showing the position of each gauge (in relation to jetties, harbour entrances, etc.), but it has been decided not to include these sketches. An attempt has been made to give some of the information from the sketches under the heading "Site".

All the tide gauges listed are float-operated and record by means of a pen, pencil, or stylus on paper driven at constant speed by clockwork. Gauges used mainly for river-height recording have not been included. These gauges are listed in the publication "Australian Stream Gauges", issued by the Department of National Development (Canberra 1960).

It is planned to issue supplements to this report from time to time. It would be appreciated if any errors or omissions were reported to this Division or to the Hydrographer, Royal Australian Navy, Garden Island, Sydney.

^{*}Division of Fisheries and Oceanography, C.S.I.R.O., Cronulla, N.S.W.

Station (locality) 35°2′S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

13.71

Albany, W.A.

Longitude 117°53′E. Public Works Department, W.A. Harbour and Lights Department

Apr. 1951, continuing Apr. 1951 to present

Daily

Tide board alongside gauge

W. H. Bailey and Co. Ltd., Manchester

Height scale (ft/in)

7 64 15 in. Winde Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

F-281. On granite rock about 1 ch E. of deep-water jetty

12 · 85 ft As required

Local water supply and sewerage work based on zero of tide

gauge (low-water mark, Albany)

Granite rock

2 · 454 ft

Summation of 2-hourly ordinates over period of 13 lunations

(1961-62)

On jetty

DETAILS OF TIDE GAUGE

Station (locality)

34°25′30″S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) Range of gauge

Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Ardrossan, S.A.

137°55'30"E. Longitude South Australia Harbours Board

Harbour Master

Sept. 1950 -- Oct. 1954

As above

Every 2 days

Tide board alongside gauge E. Esdaile and Sons, Sydney Height scale (ft/in)

-1 ft to +13 ft

3 in.

SE, winds affect, not seriously

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Arrow, north corner of bar doorstep, Royal Hotel

68 12 ft Every 2 yr Local datum Slate doorstep, 10 yr

Hourly heights for the periods Sept. 1950, Dec. 1952, Liver-

pool Tidal Institute

On jetty

Site

Station (locality)

Latitude 28°52'30"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Richmond River entrance, Ballina, N.S.W.

Longitude 153°35'E.

Department of Public Works, N.S.W. Department of Public Works, N.S.W.

Aug. 1947, continuing

Owing to faults in recording system, records available only

for short periods 3 Times a week

Against visual gauge

Department of Public Works Height scale (ft/in)

12 ft 9 in.

Affected by river flows

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

B.M. No. 1 arrow on step, Post Office, Ballina

9-68 ft

About 5-vr intervals

B.M. No. 1 not accurately connected to New South Wales

Standard Datum

No changes since 1947 survey. Approx. 5-yr intervals

2 · 60 ft

Harmonic analysis of 2 or more periods of 29 days' tide

recordings

On north bank of Richmond River, near Ballina Post Office

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 37°30'S.

Owner

Operator Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Beachport, S.A.

Longitude 140°01'E.

South Australia Harbours Board

Harbour Master

Sept. 1917 - June 1932

As above

Hydro Chronograph Height scale (ft/in)

-3 ft to +12 ft

41 in.

SE, winds affect gauge

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Arrow on slate doorstep of Harbour Master's residence

1

15.43 ft

Every 3 yr

Mt. Gambier-Beachport railway

Slate doorstep, 3 yr

1.9 ft

Hourly heights for period 1927-31, Liverpool Tidal Institute

On jetty

Station (locality)
Latitude 35°1'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name
Time scale (hr/in)
Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Brighton, S.A.

Longitude 138°31'E. South Australia Harbours Board

Local resident Nov. 1951—Oct. 1954 As above Every 2 days

Tide board alongside gauge
E. Esdaile and Sons
Height scale (ft/in)

-1 ft to +13 ft

3 in.

W. and SW. winds can be fairly rough

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Iron rail set in concrete near fountain entrance to jetty 17:99 ft

Port Adelaide railway datum

Considered stable

4-7 ft

Hourly heights year 1952, Liverpool Tidal Institute

On end of Brighton jetty

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 33°18'51"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)
Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Bunbury, W.A.

Longitude 115°38′22″E. Bunbury Harbour Board

Bunbury Harbour Board From 1930, continuing Aug. 1930 to present

Weekly

Tide board alongside gauge

W. H. Bailey and Co. Ltd., Manchester

Height scale (ft/in)

-1 ft to +6 ft

None Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

Bench mark on basalt at Clifton beach

l ft

3-yr intervals

Reduced level 13.97 ft

Bench mark on basalt outcrop. No variation

Bunbury jetty

Station (locality)

Latitude 16°55'25"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) 1.3/5

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Cairns Harbour No. 1 Wharf, Qld. Longitude 145°46'50"E. Cairns Harbour Board Cairns Harbour Board Nov. 1933, continuing 1939 to present Each alternate day

Tide board is fixed to wharf structure at permanent survey level mark, cut into concrete, and height registered on same is checked against automatic gauge

Alfred J. Amsler and Co., Switzerland

Height scale (ft/in)

5/6

13 ft 9 in. None Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero

Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Cairns City Council B.M. on SW. side of Koch's monument.

Abbot St. 14 11 ft

Only rarely

10:17 above State bench mark, Brisbane

Situated on solid base of monument in main city street. Occasionally

4 · 40 ft

Given in Admiralty and Harbours and Marine tide pre-

dictions No. 1 wharf

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 33°50'26"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Camp Cove, Port Jackson, Sydney 151°16'45"E. Longitude

Maritime Services Board of New South Wales Maritime Services Board of New South Wales

From Mar. 1916, continuing Mar. 1916 to present

Bi-weekly

Recorded height is checked against a direct well reading

Harrison

Height scale (ft/in)

-1 ft to +8 ft

18 in.

Only under very extreme weather conditions

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Permanent mark No. 83

9.65 ft

Standard datum

Set in concrete by Survey Co-ordination Branch of Lands Department of New South Wales, None, not required

Harmonic analysis carried out by Liverpool Tidal Institute Camp Cove, tide gauge house on south side of jetty

Station (locality) Christmas Island, Indian Ocean 105°40′E. 10°0'S. Longitude Latitude

C.S.I.R.O. Division of Fisheries and Oceanography, Owner

> E. Esdaile and Sons, Sydney Height scale (ft/in)

Clarence River entrance, N.S.W.

153°23'E.

Department of Public Works, N.S.W.

Department of Public Works, N.S.W.

Department of Public Works, N.S.W.

1

Cronulla, N.S.W.

British Phosphate Commissioners Operator June 1, 1962, continuing Period of operation June 1, 1962, to present Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Every 8 days

Method of checking accuracy of recorded heights Maker's name

Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge Open sea conditions

Period of intended operation of gauge and future plans Indefinitely

DETAILS OF TIDE GAUGE DATUM

10 ft

3 in.

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level Computed from 1-yr records North arm cantilever Site

DETAILS OF TIDE GAUGE

Longitude

Sept. 1956, continuing

Sept. 1956 to present

Against visual gauge

Height scale (ft/in)

3 Times a week

12 ft

9 in.

Station (locality)

29°25′30″S. Latitude

Owner Operator Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights Maker's name

Time scale (hr/in) Range of gauge Diameter of float

Affected by river flows Environmental effects on gauge

Period of intended operation of gauge and future plans Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero B.M. No. 2 12.6 ft Height of bench mark above gauge zero Frequency of checking this height 5-yr intervals

Relationship between bench mark and land levelling system B.M. No. 2 is not accurately connected to New South Wales standard datum

Stability of bench mark (including frequency of checking) 5-yr intervals Value of mean sea-level above zero of gauge 3.12 ft

Method of computing mean sea-level

Mean values obtained by complete harmonic analysis On river side of northern retaining wall approx, 3000 ft from Site seaward end of wall

Station (locality) Latitude 12°8'S.

Owner

Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Cocos (Keeling) Islands, Indian Ocean

96°49'E. Longitude

C.S.I.R.O. Division of Fisheries and Oceanography, Cron-

ulla, N.S.W. Meteorological Office

October 24, 1961, continuing October 24, 1961, to present

Every 2 days

Tide board alongside gauge E. Esdaile and Sons, Sydney Height scale (ft/in)

10 ft

3 in

Open sea conditions

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

On installation Not calculated yet

Earthenware cemented pipe

2 06 ft

Computed from 1-yr records

Jetty on West Island

DETAILS OF TIDE GAUGE

Station (locality)

30°20'S. Latitude Owner

Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Coffs Harbour, N.S.W.

153°00'E. Longitude

Department of Public Works, N.S.W. Department of Public Works, N.S.W.

Aug. 1951, continuing Aug. 1951 to present Every 2 days Against visual gauge

Department of Public Works, N.S.W.

Height scale (ft/in)

12 ft Q in None

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

B.M. No. 1. Bolt set in concrete

21 · 45 ft

Approx. 5-yr intervals

B.M. No. 1 not accurately connected to New South Wales standard datum

Has been stable for more than 30 yr. Approx. 5-yr intervals

2.81 ft

Mean sea-level has been taken from a 12 months' analysis of hourly heights obtained by automatic recorder. Period of record was Aug. 1951-July 1952

About half-way along north side of jetty

Site

10 B. V. HAMON

DETAILS OF TIDE GAUGE

Station (locality) 12°28'S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) 21 Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Darwin Harhour, N.T. 131°51'E. Longitude Water Resources Branch, Darwin

Hydrographic Section Personnel May 1955, continuing

May-Oct. 1955; Mar. 1956-Apr. 1957; July 1957 to present

Twice a week

Sprocketed, graduated float tape, reading recorded on

inspection

Leupold and Stevens, U.S.A. Height scale (ft/in) -4 ft to +34 ft

10 in.

In spite of gauge being in an estuary, river discharges have

little effect on tidal variations

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Northern Territory Administration B.M. No. 100

32 · 74 ft

On installation

Reduced level 29-49 ft on town datum

NW. abutment on wharf approach. In 1959 a variation of 0.03 ft was found. Last check by Lands and Survey Department was in 1959

13:5 ft

1-yr records, Central day: Nov. 1, 1954. Liverpool Tidal

Institute

Darwin Harbour, facing east arm of river

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 41°11'2"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge

Diameter of float

Environmental effects on gauge Period of intended operation of gauge and future plans Devonport, Tas.

146°21'46"E. Longitude Devonport Marine Board Devonport Marine Board From 1954, continuing 1954 to present

Weekly

Tide board alongside gauge E. Esdaile and Sons, Sydney Height scale (ft/in) -1 ft 6 in. to +12 ft 6 in.

14 in.

Winds and river discharges

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

Bench mark cut in concrete wall

12-15 ft

Periodically

Reduced level of bench mark is 17.93 ft, 5.42 ft above river bench mark

Records show no change in the period of 15 yr. Periodically 5-3 ft

On right-hand corner of wharf opposite to a concrete wall

Station (locality) Latitude 37°5′S.

Owner

Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge

Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Eden, N.S.W.

Longitude 149°59 E.

C.S.I.R.O. Division of Fisheries and Oceanography,

Cronulla, N.S.W. Harbour Master

July 13, 1957, continuing

July 13, 1957, to June 1962; Dec. 23, 1962, to present

Every 2 days

Tide board alongside gauge E. Esdaile and Sons, Sydney Height scale (ft/in)

10 ft 3 in. None Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

A-8415

Local bench mark connected to Lands Department P.M. No.

2398 adjacent to Shire Office at Eden

Concrete post 2 · 73 ft

Records for a year

At end of Cannery Wharf

DETAILS OF TIDE GAUGE

Station (locality) 35°5'S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Edithburgh, S.A.

Longitude 137°45'E. South Australia Harbours Board

Harbour Master Oct. 1946-Jan. 1953

As above

Every 2 days

Tide board alongside gauge Negretti and Zambra Height scale (ft/in)

-3 ft to +13 ft

41 in.

SW, winds cause waves

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Bolt set in concrete near Harbour Master's doorstep

32.53 ft Yearly Local datum

Assumed stable. Bolt set in concrete

Hourly heights for period Oct. 1946-Dec. 1962, Liverpool

Tidal Institute

On jetty

Site

Station (locality)
Latitude 41°03'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name
Time scale (hr/in)
Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Emu Bay, Burnie, Tas. Longitude 145°55'E. Marine Board of Burnie Marine Board of Burnie From 1952, continuing 1952 to present

No height check prior to Apr. 1963 Tide board alongside gauge Gents of Leicester, England

Height scale (ft/in)
12 ft
19 in.
Winds
Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Bench mark in payement on approach to Jones Pier 21 · 39 ft

Bench mark 6 02 ft below State datum

Solid ground, no history of earth movement. No check

6 2 ft

From Admiralty tide tables At entrance of Jones Pier

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 33°51'23"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Fort Denison, Port Jackson, N.S.W. Longitude 151°13'34"E.

Maritime Services Board of New South Wales
Maritime Services Board of New South Wales

From May 1866, continuing May 1866 to present

Daily

Recorded height checked against tide pole

Harrison

Height scale (ft/in)
-1 ft to +8 ft

18 in.

Only under very extreme weather conditions

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level Site Permanent marks 101 and 102

21.81 ft for P.M. 101; 21.78 ft for P.M. 102

3-yr intervals

Standard datum

Set in concrete by Survey Co-ordination Branch of Lands Department of New South Wales. None, not required

2.93 ft

Harmonic analysis carried out by Liverpool Tidal Institute Fort Denison, near light tower

Station (locality) Latitude 33°42'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge

Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Franklin Harbour, S.A.

Longitude 136°57'E. South Australia Harbours Board

Harbour Master Nov. 1934-Feb. 1941

As above

Hydro Chronograph Height scale (ft/in)

-3 ft to ± 12 ft 47 in. None

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Arrow, slate doorstep on Post Office

14-48 ft Yearly Local

Assumed stable, slate doorstep

Hourly heights for period 1935-39, Liverpool Tidal Institute

On jetty near No. 9 Jetty light

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 32°3′13″S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Fremantle, W.A.

Longitude 115°44'9"E. Fremantle Harbour Trust Fremantle Harbour Trust Prior to 1955, continuing Prior to 1955 to present

Daily

Sounding at fixed datum

W. H. Bailey and Co. Ltd., Manchester

Height scale (ft/in)

- 1 ft to +6 ft 1 ft 6 in.

None Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Concrete floor slab of tide gauge cabin

Zero on tide gauge is 0.00 ft for the State land levelling system. The nearest State land survey system bench mark at the adjacent slipway has a value of 11-97 ft

Concrete floor slab

2 · 40 ft

Average of monthly mean tide level for 1955-62

Harbour

Station (locality) Latitude 38°8'45"S. Owner

Operator Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) 1 Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Yarra Street Pier, Geelong, Vic. Longitude 144°21'57"E. Geelong Harbour Trust Commissioners

Geelong Harbour Trust Hydrographic Surveyor From 1951, continuing

Unreliable records from 1951. Reliable from Aug. 26, 1960. to present

Weekly

Measured with steel tape and plumb from bench mark situated within 20 yd of gauge house

R. W. Munro Ltd., London Height scale (ft/in) ~ 2 ft to ± 6 ft

18 in.

Affected slightly by winds

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level Site

Bench mark cut in step of Geelong Custom House

30 · 358 ft Yearly

Geodetic value for this bench mark is 28 722 ft levelled from Geodetic B.M. No. 43

Geodetic B.M. established by Lands Department (1st order). G.H.T. B.M. cut in bluestone step of Custom House in position not subject to wear. Yearly

1-636 ft

By geodetic levelling Yarra Street Pier, Geelong

DETAILS OF TIDE GAUGE

Station (locality) Latitude 28°47'S.

Owner Operator Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge Diameter of float Environmental effects on gauge

Period of intended operation of gauge and future plans

Geraldton, W.A.

114°35'E. Longitude Public Works Department, W.A. Harbour and Lights Department July 18, 1961, continuing

July 18, 1961, to present

Daily

Tide board alongside gauge Leupold and Stevens* Height scale (ft/in)

7 ft 10 in. Winds Indefinitely

*Previously a Bailey tide recorder.

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Method of computing mean sea-level

SE. corner of most easterly bollard plate

11-33 ft

As required

9.83 ft above low-water mark as used for water supply and sewerage work

Cast steel bollard on reinforced concrete wharf

2 · 873 ft

Summation of 2-hourly ordinates over period of 13 lunations (1961-62)

Site

Station (locality)

Latitude 23°53'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

11/3

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Gladstone, Old.

151°12'E. Longitude

Department of Harbours and Marine, Brisbane

1

Gladstone Harbour Board Dec. 21, 1954-Feb. 13, 1961 Dec. 21, 1954-Feb. 13, 1961

Weekly

Tide board alongside gauge

Alfred J. Amsler and Co., Switzerland

Height scale (ft/in)

Unknown

No further records. Recorder removed

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Gladstone Harbour

DETAILS OF TIDE GAUGE

Station (locality)

42°53′10″S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) $1 \cdot 25$

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Hobart, Tas.

147°20'17"E. Loagitude Marine Board of Hobart Marine Board of Hobart

Date unknown, continuing

Reliable records date from Feb. 1960 when new tide gauge

installed

Almost daily

Heights checked against State Permanent Marks. Accuracy

to about 1 in.

George Kent Limited, London 0.97 Height scale (ft/in)

+0 ft to +9 ft, Zero is reputed M.L.W.O.S.

12 in. None

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero

Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

M.B.H. Mark No. 17 corresponding to State Permanent

Mark No. 194 10 · 05 ft

Monthly

Part of State permanent mark system

There is extremely slow subsidence of mark. None

3 · 4 fr

On wharf in Sullivan Cove, opposite Marine Board Office

Station (locality) Latitude 36°50'S.

Owner Operator Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights Maker's name Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Kingston, S.A.

Longitude 139°50′30″E. South Australia Harbours Board

Harbour Master June 1946-June 1952 As above Every 2 days

Tide board alongside gauge E. Esdaile and Sons, Sydney Height scale (ft/in) -1 ft to +13 ft

3 in.

West winds cause waves

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Arrow on doorstep of Royal Mail Hotel

14.50 ft Yearly

Same as railway levels, Kingston-Naracoorte railway

Stone doorstep. About every 3 yr

7 . 7 ft

Hourly heights, June 1946-May 1952, Liverpool Tidal

Institute Kingston Jetty

DETAILS OF TIDE GAUGE

Station (locality) Latitude 31°31'S.

Owner Operator Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Lord Howe Island, Pacific Ocean Longitude 159°7'E. Department of Civil Aviation Department of Civil Aviation June 19, 1953, continuing

June 19, 1953-May 6, 1955; Oct. 16, 1956-Dec. 13, 1956;

Mar. 21, 1957, to present

Board alongside gauge E. Esdaile and Sons, Sydney Height scale (ft/in)

10 ft 3 in.

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

B.M. on concrete step 16-96 ft On installation

Not calculated On concrete step 3.82 ft From 1-yr data

Public jetty in Hunter Bay

Station (locality)

Latitude 18°31"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)

1 1/16

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Lucinda, Old.

146°19″E. Longitude

Lucinda Bulk Sugar Terminal Organization

Lucinda Bulk Sugar Terminal

Aug. 4, 1961, continuing Aug. 4, 1961, to present

Daily

Tide board alongside gauge R. W. Munro Ltd., London Height scale (ft/in) 2 6/13

24 ft

Between 5 and 7 in.

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Lucinda Bulk Sugar Terminal

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 21°06'26"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Mackay Outer Harbour, Qld. 149°13'22"E. Longitude Mackay Harbour Board Mackay Harbour Board

1944, continuing Since 1944 to present

Weekly By soundings

A. J. Amsler and Co., Switzerland

Height scale (ft/in) -1 ft to +23 ft

12 in. Winds

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

State B.M. No. 43 32:59 ft

Not checked

Part of State permanent mark system

Excellent, None

Refer Harbours and Marine Department, Brisbane

On No. 1 Pier

Station (locality)

Latitude 12°13'24"S.

Owner

Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) 13 Range of gauge

Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Melville Bay, East Arnhem Land, N.T.

136°41′36"E. Longitude

Commonwealth Aluminium Corporation Ltd.

Chief Hydrographer, Commonwealth Aluminium Corpora-

tion Ltd. Nov.-Dec. 1958 20 days

Weekly

Tide board alongside gauge Ott Bayen, Germany Height scale (ft/in)

20 ft 6 in.

No further records

DETAILS OF TIDE GAUGE DATUM

Local beach mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

Tellurometer Trigonometrical A on Drimmie Hill

13.74 ft

None

Permanent trigonometrical station on Drimmie Hill

Not computed

Wooden jetty at western base of Drimmie Hill

DETAILS OF TIDE GAUGE

Station (locality)

35°58'S. Latitude Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Moruya River entrance, N.S.W.

150°3'E. Longitude

Department of Public Works, N.S.W. Department of Public Works, N.S.W.

Oct. 1951—Oct. 1952 Nov. 1951-Oct. 1952

Daily

Tide board alongside gauge

Department of Public Works, N.S.W.

Height scale (ft/in)

12 ft 9 in.

Affected by river flows

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

B.M. No. 7 G.I. pipe at station 7

14-24 ft

B.M. No. 7 is not connected to New South Wales standard datum

A pipe set in concrete in base of northern breakwater

2 55 ft

From records for Nov. 1951-Oct. 1952, Liverpool Tidal

Institute

At inner end of north breakwater

Site

Station (locality)
Latitude 32°55′S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)
Method of checking accuracy of recorded heights

Maker's name
Time scale (hr/in)
Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Newcastle, N.S.W.

Longitude 151°48'E.

Department of Public Works, N.S.W. Department of Public Works, N.S.W.

Prior to 1890, continuing

For many years. In July 1961 control of Newcastle gauge and records were transferred to Maritime Services Board of New South Wales

Daily

Against visual gauge

Department of Public Works Height scale (ft/in) 1

12 ft 9 in.

Affected by river flows

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Method of computing mean sea-level

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Site

B.M. No. 1, Customs House, Newcastle

14.0 ft

5-yr intervals

B.M. No. I not accurately connected to New South Wales

standard datum

Has been stable for over 50 yr. 5-yr intervals

2.86 ft

Mean values based on heights of high and low waters

Inside entrance to Hunter River

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 38°17'36"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)
Range of gauge

Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Point Lonsdale, Vic.

Longitude 144°37′01″E.

Ports and Harbours Branch, Vic.

Ports and Harbours Branch, Vic.

Nov. 14, 1962, continuing

From Nov. 14, 1962, to present

Weekly

By actual measurement of the water level both inside and outside the well, from a B.M. on top of the steel stand pipe

R. W. Munro Ltd.

Height scale (ft/in)

-2 ft to +10 ft

18 in. None

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level Site Door sill of Point Lonsdale lighthouse

45 · 210 ft Yearly

Level of Point Lonsdale lighthouse B.M. reduced to datum of Geodetic Survey of Victoria, i.e. mean sea-level at Point Lonsdale is 42.273 ft

Door sill of lighthouse constructed on rock foundation and selected as primary for precise levels for Victoria. Yearly 2-937 ft

Preliminary value obtained from 2-yr observations

Outer end of Point Lonsdale Jetty

Station (locality)
Latitude 34°51′S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) 0-833

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Port Adelaide Inner Harbour, S.A. Longitude 138°30°E. South Australia Harbours Board Head Chainman and Tidal Attendant From about 1880, continuing

1917 to present

Daily

Tide board alongside gauge Stevens (from May 14, 1962)* Height scale (ft/in)

-5 ft to +17 ft 10 in.

None, sheltered position

Indefinitely

*Tide gauge from 1880 to 1962 was: make, Sir W. Thomsons Tide Gauge No. 5 (J. White, Glasgow): Height scale, 3 ft/in; time scale, 1 · 27 hr/in; float, 4 in. diameter.

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

B.M. No. 1 12·75 ft 6 months

Same as Port Adelaide datum, which is the State datum Railway rail about 35 ft long driven into rock. Precise levelled 1943-62. Ordinary levels every 2-3 yr

4-9 ft

Hourly heights, Liverpool Tidal Institute

South Australian Harbour Board dockyard, between Jervois Bridge and Birkenhead Bridge

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 34°47'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Port Adelaide Outer Harbour, S.A. Longitude 138°29'E. South Australia Harbours Board Head Chainman and Tidal Attendant

Nov. 1943, continuing Nov. 1943 to present Twice a week

Tide board alongside gauge

Ballout

Height scale (ft/in) 1--2 ft to +15 ft

8½ in.

Wind, especially SW., could affect water level

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Brass pin in base of concrete signal tower

20.56 ft Yearly

Same as Port Adelaide railway datum

Solid building. 5 yr

4-9 ft

Hourly heights, Liverpool Tidal Institute On south revetment mound, near outer harbour

Station (locality)

Latitude 32°32'45"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)
Method of checking accuracy of recorded heights

Maker's name
Time scale (hr/in)
Range of gauge

Diameter of float Environmental effects on gauge

Period of intended operation of gauge and future plans

Port Augusta Power Station, S.A. Longitude 137°46'45"E. South Australian Harbours Board South Australian Electricity Trust

Aug. 1955, continuing

Aug. 1955 to present. Some discontinuities owing to break-

down of old gauge

Daily

Tide board alongside gauge Negretti and Zambra Height scale (ft/in) }

-2 ft to +18 ft

4} in.

Near head of gulf. N. winds lower water level, NW.-WSW.

raise water level

S.A. Electricity Trust is running this gauge for their own information and it is not expected to continue much longer

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero

Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Electricity Trust bench mark

Same as Commonwealth railway datum Checked regularly with railway bench mark

Not calculated Not computed

On wharf near Port Augusta power station

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 32°29'30"S.

Owner

Орегатог

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)
Method of checking accuracy of recorded heights

Maker's name
Time scale (hr/in) 1
Range of gauge

Environmental effects on gauge

Environmental ences on gauge

Diameter of float

Port Augusta West, S.A.

Longitude 137°45′30″E. South Australia Harbours Board

Harbour Master

Jan. 19, 1949—Aug. 19, 1955

Whole period. There are many breaks in these records. Old

machine

Weekly

Tide board alongside gauge Negretti and Zambra Height scale (ft/in)

-2 ft to +18 ft

Head of gulf: N. winds lower water level, NW.-WSW. winds

raise water level

No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Period of intended operation of gauge and future plans

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Arrow, east side doorstep Hotel Augusta

16 59 ft Yearly

Same as Commonwealth railway datum

Stone doorstep. 2 yr

5 · 9 ft

Hourly heights, Liverpool Tidal Institute

On jetty near bridge connecting Port Augusta and Port Augusta West B. V. HAMON

DETAILS OF TIDE GAUGE

Station (locality)
Latitude 20°18'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) 2 · 125

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Port Hedland, W.A.
Longitude 118°35'E.
Department of Public Works, W.A.
Department of Public Works, W.A.

Apr. 4, 1960, continuing

Apr. 4, 1960-Jan. 12, 1962; Sept. 17, 1962, to present

Weekly

Tide board alongside gauge

Lege, London

Height scale (ft/in) 3.75

30 ft 6 in. None Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

P.H.2 28·83 ft As necessary

28-83 above chart datum (1437), i.e. has a common datum

Concrete block in sand

DETAILS OF TIDE GAUGE

Station (locality)
Latitude 34°28'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)
Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Port Kembla, N.S.W.

Longitude 150°55'E.

Department of Public Works, N.S.W. Department of Public Works, N.S.W.

Aug. 1957, continuing Since Aug. 1957 to present

Daily

Against visual gauge

Department of Public Works, N.S.W.

Height scale (ft/in) 1

12 ft 9 in. None Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge Method of computing mean sea-level Site B.M. No. 5 on concrete block near base of No. 3 jetty

12.51 ft 5-yr intervals

B.M. No. 5 not accurately connected to New South Wales

standard datum

Has been stable for more than 15 yr. About 5-yr intervals

2·83 ft

Mean values based on heights of high and low waters

End of No. 3 jetty

Station (locality)

Latitude 34°43'S. Owner

Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights Maker's name

Time scale (hr/in) 0.833

Range of gauge

Diameter of float

Period of intended operation of gauge and future plans

Environmental effects on gauge

Port Lincoln, S.A.

Longitude 135°52'E.

South Australia Harbours Board Harbour Master

Nov. 1917, continuing

Nov. 1917-Apr. 1937; Aug. 1956-Nov. 1957; Apr. 1962 to

present 3 Times a week

Tide board alongside gauge

Stevens (from Sept. 23, 1962)*

Height scale (ft/in) -2 ft to +17 ft

10 in.

Fairly sheltered, NE. and SE. winds affect gauge slightly

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Arrow on corner of verandah of Harbour Master's Office

15:77 ft

Yearly

Same as Port Lincoln-Thevenard railway

Solid brick building. Every 2 yr

2.9 ft

Hourly heights, 5 yr, Liverpool Tidal Institute

At outer end of bulk loading berth

DETAILS OF TIDE GAUGE

Station (locality) 38°03'S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights Maker's name

Time scale (hr/in)

0.833

Range of gauge

Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Port Macdonnell, S.A. 140°42'E. Longitude South Australia Harbours Board

Harbour Master June 1956, continuing June 1956 to present

3 Times a week Tide board alongside gauge Stevens (from June 24, 1962)*

Height scale (ft/in) -3 ft to +10 ft

10 in.

Open sea conditions. S. and SW. winds would affect gauge

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge

Method of computing mean sea-level Site

Relationship between bench mark and land levelling system

Arrow on Court House doorstep 10 · 73 ft

Yearly Local datum

Solid stone building. Original B.M.

1.9 ft

Hourly heights, 5 yr Port Macdonnell Jetty

^{*}Prior to Sept. 23, 1962, gauge was Negretti and Zambra, scale 1 ft/in, 1 hr/in, float 41 in. diameter.

^{*}Before June 24, 1962, gauge was Esdaile Portable, scale 2 hr/in, 2 ft/in, float 3 in. diameter.

24 B. V. HAMON

DETAILS OF TIDE GAUGE

Station (locality)
Latitude 17°30'S.

Owner

Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) 1.4.

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Port of Normanton, Karumba, Qld.

Longitude 140°50'E.

Queensland Government (Committee for Co-ordination of

Levels

Department of Harbours and Marine, Queensland

Sept. 25, 1956, continuing Sept. 25, 1956, to present

Twice a week

Tide board alongside gauge R. W. Munro Ltd., London Height scale (ft/in) 2¹/₁

24 ft

6 in.

Depends on seasonal influences

Levels Committee operates gauge as check on geodetic levels. It will be installed elsewhere after December 1964

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking) Value of mean sea-level above zero of gauge

Method of computing mean sea-level

Site

State Permanent Mark 601

20.53 ft

Three times in period 1957-62

Gauge zero is 2.93 ft below State datum as determined from

B.M. No. 601

Brass plug in concrete. Check levelled when installed

5 36 ft

Hourly heights

On former Department of Civil Aviation jetty in Norman

River, township of Karumba

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 33°11'S.

Owner

Owner

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in) 0.833

Range of gauge

Environmental effects on gauge

Period of intended operation of gauge and future plans

Port Pirie, S.A.

Longitude 138°01'E.

South Australia Harbours Board

Harbour Master
July 1917, continuing
July 1917 to present
3 Times a week

Tide board alongside gauge Stevens (from Sept. 2, 1962*) Height scale (ft/in)

-2 ft to +17 ft

10 in.

None, sheltered

Indefinitely

*Prior to Sept. 2, 1956, gauge was Negretti and Zambra, scale 1 hr/in, 1 ft/in, float 41 in. diameter.

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero

Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Arrow on W. side slate doorstep front entrance to Harbour

Master's Office

Same as Adelaide-Pirie railway

Solid stone building. About once every 5 yr

5 4 ft

Yearly

Hourly heights, 10 yr, Liverpool Tidal Institute Oil berth between Baltic wharf and new ore berth

Station (locality)
Latitude 34°17'S.
Owner

Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

7 . 2

Maker's name Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Stenhouse Bay, S.A.
Longitude 136°56'E.
South Australia Harbours Board

Harbour Master Dec. 1941—June 1946 As above

Once a week

Tide board alongside gauge Hydro Chronograph Height scale (ft/in) I -3 ft to +12 ft

41 in.

SW, winds cause fair swell No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero
Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

B.M. on post set in granite toe of cliffs at shore end of jetty

10.54 ft Original B.M. Local datum

Set in granite assumed stable

1 · 8 ft

Hourly heights, June 1942-June 1946, Liverpool Tidal

Institute

On Stenhouse Bay jetty

DETAILS OF TIDE GAUGE

Station (locality)
Latitude 32°09'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)
Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in)

0.833

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Theyenard, S.A.

Longitude 133°39'E. South Australia Harbours Board

Harbour Master

From Apr. 29, 1959, continuing July 1917—Aug. 1920: Feb. 1934—May 1943: Apr. 1959 to

present
Twice a week

Tide board alongside gauge Stevens (from May 20, 1962*) Height scale (ft/in) 1

-5 ft to +17 ft

10 in.

SW. winds affect gauge

Indefinitely

*July 1917—Aug. 1920, Feb. 1934—May 1943, gauge was Negretti and Zambra, scale 1·33 hr/in, 1 ft/in, float 4} in. diameter; Apr. 29, 1959—May 20, 1962, Esdaile portable, 2 ft/in, 2 hr/in, float 3 in. diameter.

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level Site B.M. near SW. corner of wheat shed

10 · 87 ft Every 2 yr

Same as Port Lincoln-Thevenard railway system
Pin set in rock and concreted. Checked about every 5 yr

depending on surveys 3 · 3 ft

Hourly heights for period 1934–42, Liverpool Tidal Institute
On jetty

Station (focality)
Latitude 10°35'S.

Owner

Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)
Range of gauge

Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Thursday Island, Pacific Ocean Longitude 142°13'E.

C.S.I.R.O. Division of Fisheries and Oceanography,

Cronulla, N.S.W. Harbour Master

Jan. 21, 1952—Feb. 21, 1958 Jan. 21, 1952—Feb. 21, 1958

Weekly

Recorded height checked against tide pole

E. Esdaile and Sons, Sydney Height scale (ft/in) 1

10 ft 3 in. None

Recorder removed on Feb. 21, 1958

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero
Height of bench mark above gauge zero
Frequency of checking this height
Relationship between bench mark and land levelling system
Stability of bench mark (including frequency of checking)
Value of mean sea-level above zero of gauge
Method of computing mean sea-level
Site

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 19°15'11"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name

Site

Time scale (hr/in) 14

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Townsville Harbour, Qld. Longitude 146°50'14"E. Townsville Harbour Board Townsville Harbour Board Nov. 19, 1948, continuing Nov. 19, 1948, to present

Alfred J. Amsler and Co., Switzerland

Height scale (ft/in)

-2 ft to +16 ft

111 in.

Local drainage and unusual weather conditions

Townsville Harbour Board Bench Mark (Master)

1

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero
Height of bench mark above gauge zero
Frequency of checking this height
Relationship between bench mark and land levelling system
Stability of bench mark (including frequency of checking)
Value of mean sea-level above zero of gauge
Method of computing mean sea-level

Whenever gauge is altered

See Harbour Plan

Any movement unlikely, close proximity to Magazine Hill

Not calculated Not calculated

Outer end of concrete pier No. 1, approx. } mile from harbour entrance

Station (locality) 35°34'S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name

Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Victor Harbour, S.A. 138°38'E. Longitude South Australia Harbours Board

Harbour Master

June 1953, continuing June 1953 to present. Many breaks up to July 1962

3 Times a week

Tide board alongside gauge Leupold and Stevens* Height scale (ft/in) -5 ft to +12 ft

10 in.

None. Sheltered position

Indefinitely

*Before July 1962 gauge was Negretti and Zambra, scale 1 ft/in, 1 hr/in, float 44 in. diameter

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Arrow on NE. corner of store, Railways goods shed

16 01 ft Yearly

Same as Adelaide-Victor Harbour railway Solid stone building, accepted as being stable

12 months' hourly heights, Liverpool Tidal Institute

On Granite Island jetty

DETAILS OF TIDE GAUGE

Station (locality)

37°49'16"S. Latitude

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge

Diameter of float Environmental effects on gauge

Period of intended operation of gauge and future plans

Victoria Dockhead Signal Station, Melbourne

144°55'57"E. Longitude

Melbourne Harbour Trust Commissioners Melbourne Harbour Trust Commissioners

1909, continuing

Dec. 1932 to present Daily readings

By reference to tide pole visible 30 ft distant and established

by land levelling

Height scale (ft/in) $-1\frac{1}{2}$ ft to +7 ft

9 in.

Winds and river discharges

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero

Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level Site

MHT. B.M. No. 113. Reduced level 13-41 ft M.M.B.W.

datum 13-22 ft Yearly

Zero Admiralty Chart datum is equal to 0.19 ft on the land levelling system (Melbourne and Metropolitan Board of Works datum)

Bronze plug set in 20 ft diameter 3 ft thick reinforced concrete platform on a mass of piles supporting a 60-ton steam crane (no known change since established in 1929). Yearly

Station (locality)
Latitude 33°54'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name
Time scale (hr/in)
Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Wallaroo, S.A.

Longitude 137°36′E.
South Australia Harbours Board

Harbour Master Feb. 1928—Apr. 1938

As above

Twice a week

Tide board alongside gauge Negretti and Zambra Height scale (ft/in) 1 -5 ft to +17 ft

4≹ in.

Open bay affected by SW., W., and NW. winds

It is proposed to erect a Stevens gauge about middle of 1963

and this will be permanent

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

B.M. on iron rail near west end of Harbour Master's Office

14 · 48 ft Yearly

Same as railway datum, Wallaroo-Adelaide line

Iron rail driven to firm soft soil. About every 2 yr depending on work in district

2 · 9 ft

Hourly heights, 5 yr, Liverpool Tidal Institute

Near shore end of old jetty

DETAILS OF TIDE GAUGE

Station (locality)

Latitude 33°1'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name
Time scale (hr/in)
Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Whyalla, S.A.

Longitude 137°30'E.

South Australia Harbours Board

Harbour Master Nov. 1942—July 1946

As above

Every 2 days

Tide board alongside gauge

E. Esdaile and Sons, Sydney Height scale (ft/in) 2

-1 ft to +13 ft

3 in.

Open to S. and E. winds No further records

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

B.M. 515 ft north of forge steel plant

34.71 ft

Yearly

Same as Morgan-Whyalla water main

Concrete bench mark. Yearly

4-9 ft

Period 1942-46, Liverpool Tidal Institute Near inner end of fitting-out wharf in basin

Station (locality)

Latitude 37°51'49"S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available

Frequency of accuracy checks (time and height)
Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in)

Range of gauge Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Williamstown, Vic.

Longitude 144°54'35"E.

Melbourne Harbour Trust Commissioners Melbourne Harbour Trust Commissioners

1859, continuing

Unreliable data from 1872 to Sept. 1943, reliable from Sept.

1949 to present

Daily

Tide board alongside gauge

J. Newman and Venner Ltd, England

Height scale (ft/in)

-1 ft 6 in. to +6 ft 6 in.

9 in.

None

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system

Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

M.H.T. B.M. No. 160

12 · 434 ft

Quarterly

Zero Admiralty Chart datum equals R.L. 0·19 ft of Melbourne and Metropolitan Board of Works datum

Niche cut in wall at N. corner of time ball tower, Williams-

1.387 ft

Liverpool Tidal Institute from dubious data in 1945

Near boat landing, Ann Street Pier

DETAILS OF TIDE GAUGE

Station (locality)
Latitude 15°27'S.

Owner Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height)

Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in) Range of gauge Diameter of float

21/2

Environmental effects on gauge

Period of intended operation of gauge and future plans

Wyndham, W.A. Longitude 128°6′E.

Public Works Department, W.A. Public Works Department, W.A. Oct. 16, 1962, continuing

Satisfactory records not yet available

Weekly

Tide board alongside gauge Leupold and Stevens

Height scale (ft/in)

40 ft 10 in.

Probably in wet season

Indefinitely

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero
Height of bench mark above gauge zero
Frequency of checking this height
Relationship between bench mark and land levelling system
Stability of bench mark (including frequency of checking)
Value of mean sea-level above zero of gauge
Method of computing mean sea-level
Site

Admiralty bench mark on power line pylon

32 · 20 II

As required

30.86 ft above zero of land levelling system Lead plug set in concrete foundation

Station (locality)

Latitude 29°25'40"S.

Owner
Operator

Period of operation

Periods for which continuous tidal records are available Frequency of accuracy checks (time and height) Method of checking accuracy of recorded heights

Maker's name Time scale (hr/in)

Range of gauge
Diameter of float

Environmental effects on gauge

Period of intended operation of gauge and future plans

Yamba, N.S.W.

Longitude 153°22'E.

Department of Public Works, N.S.W.

Hydrographic Surveyor Feb. 1963, continuing From Feb. 1963 to present Every 4 days

By visual tide gauge E. Esdaile and Sons, Sydney Height scale (ft/in) 1

7 ft 3 in.

River discharges and winds

Temporary gauge

DETAILS OF TIDE GAUGE DATUM

Local bench mark related to tide gauge zero

Height of bench mark above gauge zero

Frequency of checking this height

Relationship between bench mark and land levelling system Stability of bench mark (including frequency of checking)

Value of mean sea-level above zero of gauge Method of computing mean sea-level

Site

Zero southern breakwater

19 · 46 ft

Not connected to standard datum

Should not be regarded as stable for geodetic levelling pur-

poses

Clarence River entrance

STATION LOCALITY INDEX

Albany, W.A., 4 Ardrossan, S.A., 4 Ballina, N.S.W., 5 Beachport, S.A., 5 Brighton, S.A., 6 Bunbury, W.A., 6

Cairns Harbour, Qld., 7

Camp Cove, Port Jackson, N.S.W., 7 Christmas I., Indian Ocean, 8 Clarence River Entrance, N.S.W., 8 Cocos (Keeling) Is., Indian Ocean, 9

Coffs Harbour, N.S.W., 9 Darwin Harbour, N.T., 10 Devonport, Tas., 10

Eden, N.S.W., 11 Edithburgh, S.A., 11 Emu Bay, Burnie, Tas., 12

Fort Denison, Port Jackson, N.S.W., 12

Franklin Harbour, S.A., 13 Fremantle, W.A., 13

Geelong, Vic., 14 Geraldton, W.A., 14 Gladstone, Qld., 15 Hobart, Tas., 15

Kingston, S.A., 16 Lord Howe I., Pacific Ocean, 16

Lucinda, Qld., 17

Mackay Outer Harbour, Qld., 17

Melville Bay, East Arnhem Land, N.T., 18 Moruya River Entrance, N.S.W., 18

Newcastle, N.S.W., 19

Point Lonsdale, Vic., 19

Port Adelaide Inner Harbour, S.A., 20 Port Adelaide Outer Harbour, S.A., 20 Port Augusta Power Station, S.A., 21

Port Augusta West, S.A., 21 Port Hedland, W.A., 22 Port Kembla, N.S.W., 22 Port Lincoln, S.A., 23 Port Macdonnell, S.A., 23 Port of Normanton, Qld., 24

Port Pirie, S.A., 24

Stenhouse Bay, S.A., 25

Thevenard, S.A., 25

Thursday I., Pacific Ocean, 26 Townsville Harbour, Qld., 26

Victor Harbour, S.A., 27 Victoria Dockhead, Vic., 27

Wallaroo, S.A., 28 Whyalla, S.A., 28 Williamstown, Vic., 29 Wyndham, W.A., 29

Yamba, N.S.W., 30

Indian Ocean

Christmas I., 8 Cocos (Keeling) Is., 9

New South Wales

Ballina, 5

Camp Cove, Port Jackson, 7 Clarence River Entrance, 8

Coffs Harbour, 9

Eden, 11

Fort Denison, Port Jackson, 12

Lord Howe I., 16

Moruya River Entrance, 18

Newcastle, 19 Port Kembla, 22 Yamba, 30

Northern Territory

Darwin Harbour, 10

Melville Bay, East Arnhem Land, 18

Pacific Ocean

Lord Howe I., 16 Thursday I., 26 Queensland

Cairns Harbour, 7 Gladstone, 15

Lucinda, 17

Mackay Outer Harbour, 17 Port of Normanton, Karumba, 24

Thursday I., 26

Townsville Harbour, 26

South Australia

Ardrossan, 4 Beachport, 5 Brighton, 6 Edithburgh, 11 Franklin Harbour, 13

Kingston, 16

Port Adelaide Inner Harbour, 20 Port Adelaide Outer Harbour, 20 Port Augusta Power Station, 21

Port Augusta West, 21 Port Lincoln, 23 Port Macdonnell, 23 Port Pirie, 24 Stenhouse Bay, 25 Thevenard, 25 Victor Harbour, 27 Wallaroo, 28 Whyalla, 28

Tasmania

Devonport, 10 Emu Bay, Burnie, 12

Hobart, 15

Victoria

Geelong, 14 Point Lonsdale, 19 Victoria Dockhead, 27 Williamstown, 29

Western Australia

Albany, 4 Bunbury, 6 Fremantle, 13 Geraldton, 14 Port Hedland, 22 Wyndham, 29

C.S.I.R.O. DIVISION OF FISHERIES AND OCEANOGRAPHY

TECHNICAL PAPERS

- 1. M. Blackburn and G. W. Rayner.—Pelagic fishing experiments in Australian waters.
- 2. T. W. Houston.—Commercial trawling lists in the Great Australian Bight, 1949-52.
- 3. M. Blackburn and R. Downie.-Oily pilchards in New South Wales waters.
- 4. A. H. Weatherley.—Tasmanian farm dams in relation to fish culture.
- 5. D. J. Dunstan.—The barramundi Lates calcarifer (Bloch) in Queensland waters.
- 6. H. R. Jitts.-Measurements of light penetration in the Tasman Sea 1955-57.
- 7. D. J. Rochford.—The primary external water masses of the Tasman and Coral Seas.
- 8. K. Wyrtki.—The surface circulation in the Coral and Tasman Seas.
- 9. G. F. Humphrey.—The concentration of plankton pigments in Australian waters.
- 10. B. S. Newell.—Hydrology of south-east Australian waters: Bass Strait and New South Wales tuna fishing area.
- 11. B. V. Hamon.—Structure of the East Australian Current.
- 12. B. Wisely and C. Purday.—An algal mass-culture unit for feeding marine invertebrate larvae.
- 13. J. M. Thomson.—The tagging and marking of marine animals in Australia.
- 14. E. J. F. Wood,—Dinoflagellates in the Australian region. II. Recent collections.
- 15. B. V. Hamon.—Australian tide recorders.