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SUMMARY 

This report is Volume III of a three volume series on ballast water risk assessment.  The report 
examines the use of Bayesian statistical inference in quantified ecological risk assessment.  The 
purpose of the report is to determine whether or not Bayesian statistical methods should be used 
in the ballast water risk assessment being developed by the Centre for Research on Introduced 
Marine Pests (CRIMP), for the Australian Quarantine and Inspection Service (AQIS). 

Bayesian inference techniques for discrete and continuous variables are illustrated with 
reference to a ballast water sampling problem (how many samples must be taken to ensure 
confidence in a negative result), and a journey survival problem (what is the probability that a 
given species will survive a journey of a specified duration). 

The use of Bayesian (as opposed to classical) inference techniques in ecological risk assessment 
has recently attracted considerable attention.  The debate for and against each statistical 
approach has largely revolved around the following issues: 

1. what does probability mean when applied to ecological systems and how should it be 
calculated; 

2. the assumptions that each approach makes when analysing uncertainty about physical and 
biological parameters; 

3. providing ecological risk estimates with complete descriptions of uncertainty; 

4. the extent to which each approach is able to deal with complex, multi-parameter models in 
data sparse situations; and, 

5. can the results of each approach be clearly understood by stakeholders who may not be 
well versed in statistical science. 

On reflection there is very little to choose between the two approaches on these grounds.  
Having said this, it is possible to identify two advantages that Bayesian statistical techniques 
have over classical approaches: 

1. they are able to employ subjective interpretations of probability.  This is important to ballast 
water risk assessment because there is currently no historical database detailing species 
assemblages under specific ballasting conditions, together with the timing and frequency of 
successful introductions, that would allow empirical, deductive, risk assessment methods.  
Analysts seeking to quantify the risks associated with ballast water introductions will have 
to use inductive risk assessment methods and may therefore need to use subjective 
interpretations of probability; 

2. they immediately direct the analyst to the full distributional qualities of parameter 
uncertainty, through the posterior distribution function.  Furthermore once the posterior 
distribution has been derived it can be quickly updated as more information becomes 
available, without having to repeat the assessment from start.  Bayesian techniques are 
therefore well suited to the iterative development of quantitative risk assessment whereby 
risk estimates are made and then continually updated in light of additional information. 
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Potential problems remain, however, when specifying the prior probability distribution in data 
sparse situations.  In these situations the likelihood function may be quite diffuse and therefore 
the prior, even a non-informative one, is likely to exert considerable influence on the shape of 
the posterior distribution function.  Under these circumstances Bayesian risk assessments may 
be less repeatable than assessments using classical inference techniques. 

It is difficult therefore to define when and where Bayesian approaches might be better suited to 
quantitative ecological risk assessment than more traditional approaches.  On balance each case 
is probably best approached on its merits bearing in mind that: 

1. both classical and Bayesian risk assessments require important subjective decisions of the 
analyst – the extent to which these decisions dominate a Bayesian analysis, however, is 
dependant on the availability and quality of data; 

2. classical inference techniques cannot be used with subjective interpretations of probability, 
and since this is a valid component of the risk analyst’s tool box, Bayesian techniques form 
an important alternative approach to quantified ecological risk assessment; and, 

3. Bayesian statistical inference is well suited to the iterative development of quantitative risk 
assessment and quickly emphasises the full distributional qualities of uncertain parameters.  
The results of a Bayesian analysis, however, should be judged in light of the data that was 
available to the analyst, and the extent to which an independent analyst might arrive at the 
same (or similar) conclusions. 
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1 INTRODUCTION 

1.1 Background and objectives 

Quantitative Risk Assessment (QRA) can be broadly classified as either deductive or inductive.  
Deductive risk assessments are usually easier to do: they are based on historical data and 
employ a well-accepted (frequentist) interpretation of probability.  For example there is a plenty 
of data on road accidents involving pedestrians.  The Fatal Accident Frequency Rate (FAFR) 
can be easily calculated from this data, and the risks to pedestrians calculated accordingly1.  

Risk assessments are harder to conduct when there is no relevant historical record, for example 
when assessing the risks associated with a new technology.  Under these circumstances the 
analyst must use inductive assessment methods, and may also be forced to seek alternative (eg 
subjectivist) interpretations of probability. The first risk assessments conducted for nuclear 
power stations faced exactly this problem.  Rasmussen (1981) summarises the problem as 
follows: 

“the use of probabilistic risk assessment in large accidents of low probability must 
employ the logic of the subjectivist (or Bayesian) approach since rarely will enough 
actual data exist to use the frequentists’ definition.” 

There are some interesting parallels here with quantitative ecological risk assessment, 
particularly for ballast water introductions.  Ecological risks are usually characterised by one-off 
events with little, if any, historical precedence.  For example there is currently no historical 
database detailing species assemblages under specific ballasting conditions, together with the 
timing and frequency of successful introductions, that would allow an accident-frequency 
approach to ballast water risk assessment.  Ecological risks may also be associated with low 
probability/high consequence events, and again ballast water introductions are no exception: 

1. the small number of successful introductions, relative to the many millions of tonnes of 
ballast water released each day in ports around the world, indicates a very low event 
frequency.  In the United States, for example, the total volume of foreign ballast water 
entering US waters is approximately 220,100 tonnes per day.  The total number of foreign 
marine species probably introduced through ballast water is 57 (Carlton et al, 1995).  If we 
conservatively assume that all introductions occurred within the last ten years, and that 
ballast water discharges have remained approximately constant in this time, then the event 
frequency becomes 7.19 x 10-8 per tonne ballast water; 

2. non-native species can have dramatic economic impacts.  The zebra mussel Dreissena 
polymorpha, for example, is estimated to cost as much as US $300 million a year due to 
physical obstruction of cooling water intakes and perhaps a total of US $500 million a year 
in total nuisance costs (Weathers and Reeves, 1996);   

                                                      
1 The simplest model would assume the FAFR to be constant, and make risk estimates on this basis, eg 
the annual risk of a pedestrian being killed in a road accident is 4.2 x 10-5 (Wilson and Crouch, 1985). 
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3. non-native species can have equally dramatic ecological impacts.  They may prey upon 
native species, or compete for food and habitat, leading to the displacement and possible 
extinction of native populations (see for example McKaye et al 1985, Iongh and Van Zon 
1993, and Welcomme 1992).  Non-native species may also cause more subtle ecosystem 
changes, the full consequences of which may not be apparent for many years. 

It is not easy to conduct quantitative risk assessments under these conditions.  Deductive 
approaches are unsuitable, and the frequentist interpretation of probability they employ 
questionable.  Alternative (Bayesian) approaches may therefore be recommended. 

The objective of this document is to critically examine the use of Bayesian statistical techniques 
in quantitative ecological risk assessment, and to comment on their potential use in the ballast 
water risk assessment being developed by the CSIRO’s Centre for Research on Introduced 
Marine Pests (CRIMP).   

The impetus for this analysis dates back to September 1996 when CRIMP began to develop a 
quantitative risk assessment framework for ballast water introductions on behalf of the 
Australian Quarantine and Inspection Service (AQIS).  The first stage of the project required a 
comprehensive review of ecological risk assessment methods employed within various 
disciplines, but particularly those relating to biological introductions and invasions.  The risk 
assessment review was completed in April 1997, and subsequently published as a CRIMP 
technical report (Hayes, 1997).  This report made a number of recommendations, including: 

1. the ballast water risk assessment framework should be modelled on the Quantitative Risk 
Assessment (QRA) paradigm used by the chemical and nuclear process industries, and the 
import risk assessment framework advocated by the Office International des Epizooties;  

2. QRA is an iterative process that improves with use.  The ballast water risk assessment 
framework should emulate this and provide increasingly accurate risk estimates as more 
data are made available to the analyst; and, 

3. Bayes theorem is a statistical way of updating estimates of uncertainty in light of new 
information.  It should therefore be investigated as an alternative statistical approach to 
ballast water risk assessment.  

The development of the risk assessment framework took place subsequent to this review.  The 
framework documentation is divided into three volumes.  Volume I summarises the approach, 
the analysis and the data requirements of the risk assessment, but only mentions Bayes theorem 
in passing.  Volume I was published as a CRIMP technical report in March 1998 (Hayes and 
Hewitt, 1998).  Volume II provides a detailed description of the modules that are built into the 
framework, culminating in a demonstration model for ballast water risk assessment.  Its 
development is currently on going.  Volume III (this document) completes the series by 
examining Bayesian statistical inference techniques, and the extent to which they should be 
adopted within the risk assessment framework. 
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1.2 Scope and structure of the report 

The purpose of this document is to examine the use of Bayesian statistical inference within 
ecological risk assessment.  It does not provide an in-depth mathematical treatise of Bayesian 
methods.  Accordingly the mathematical treatment of Bayes’ theorem  has been kept 
deliberately simple, restricted in the main part to univariate analysis.  The reader is referred to 
the numerous textbooks on Bayesian methods if he or she wishes to take the statistical theory 
further than that presented here.  

Chapter 2 discusses probability and the role it plays in describing uncertainty within the risk 
assessment process.  Bayesian methods adopt a fundamentally different approach to statistical 
inference and encourage alternative interpretations of probability.  Chapter 2 explores these 
interpretations, and contrasts Bayesian statistical methods with some classical approaches to 
statistical inference. A variation on the basic Bayesian approach – Empirical Bayes - is 
introduced here. 

Chapter 3 describes Bayes’ theorem and its application to discrete and continuous data sets.  
This is illustrated with reference to a ballast sampling problem and a simple journey survival 
model.  This chapter also examines the role played by conditional probability and the likelihood 
function in Bayes theorem, and discusses the derivation of conjugate, non-conjugate, 
informative and non-informative prior distributions. 

Chapter 4 explains why Bayesian methods might be attractive to risk analysts.  The use of 
Bayes’ theorem in ecological risk assessment is examined, together with the current debate 
between advocates of Bayesian statistical inference and those that adhere to the classical 
paradigm.  This chapter does not detail the finer statistical points of this debate, but rather 
examines the basic premises which underline Bayesian methods, the arguments for and against 
these, and their practical implications from a risk assessment perspective. 

Chapter 5 summarises the preceding discussion, highlighting the case for and against the use of 
Bayesian statistical inference in ballast water risk assessment.  

Much of the mathematical and statistical detail is omitted from the main body of the text but 
included in the Appendix. 

1.3 Notation 

Random variables are represented by capitals, such as X or Y.  Values taken by these variables 
(the data) are represented by x or y.  A vector of n observations is represented as y = (y1, y2, 
y3......yn), where the subscript denotes individual observations. 

P( ) denotes the probability of a particular outcome or event.  A letter will be used in the 
parenthesis to refer to the outcome or event in question.  If this probability is conditional upon a 
second event or outcome, then this is denoted P(  /  ).  The letter after the slash denotes the 
conditioning event.  For example P(x/H0) denotes the probability of the data x, given a null 
hypothesis H0. 
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The probability mass or density function that assigns probability to values of a discrete or 
continuous variable is denoted p(x).  In both cases F(x) signifies the cumulative distribution 
function.  The joint probability distribution of two or more variables is denoted p(x, y).  The 
terms ‘density’ and ‘distribution’ are used interchangeably.  Prior probability distributions are 
denoted by the subscript 0, for example p0(x). 

The parameter(s) that characterise a probability mass or density function are generically denoted 
by θ.   It is common therefore to write p(y/θ) to signify that the probability function is 
conditional on the parameters of the distribution.  The probability of the parameter given the 
data is written p(θ/y).  When considered as a function in θ, this distribution is called the 
likelihood function, written l(θ/y). 
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2 PROBABILITY, UNCERTAINTY & RISK ASSESSMENT 

2.1  The nature of probability 

Defining probability 

Most quantitative expressions of uncertainty and risk involve the use of probability.  
Unfortunately probability is difficult to define beyond what one might intuitively understand of 
the term ‘probable’.  The three most commonly accepted definitions are: 

1. the classical, equal-likelihood definition - if an event can occur in n mutually exclusive and 
equally likely ways, and if nA of these have the attribute A, then the probability of A is the 
fraction nA/n.  This definition usually derives from a physical understanding of the system 
in question.  For example the probability of selecting any of the hearts from a deck of cards 
is 0.25.  This is verified by recognising that there are 13 hearts in a deck of 52 cards, each of 
which is (assumed) equally likely to be selected. 

2. the frequentist approach defines the probability of event A as the number of times A occurs 
(nA) in the total number of repetitions (n) of an experiment or trial.  Under certain 
conditions2, the relative frequency nA/n tends to a limiting value called the probability of A.  
This view is empirical; it derives from past experience rather than a physical understanding 
of the system in question.  For example a works manager may estimate the probability of a 
production line item being defective as 0.01, because he has observed that 1 in every 100 
items produced by the line have been faulty in the past, rather than through a detailed 
understanding of the way in which the production line works. 

3. the subjective definition, commonly associated with Bayesian methods, interprets 
probability as a rational expression of an individual’s degree of belief.  This definition is 
more flexible than the others because it does not rely on the notion of equal-likelihood, or 
the repeated iteration of trials.  For example a businessman may estimate the probability 
that his next venture will be a success, purely on the basis of his experience (Hampton et al, 
1973).  For the very same reasons, however, this notion of probability is often viewed with 
a certain degree of scientific scepticism3.  

There are, however, numerous other approaches to probability.  For example Good (1959) 
identifies three other types of probability and distinguishes physical probability – the probability 
of a success given the experimental set-up – from the attempted proof of this in terms of long-
run frequency.  This distinction seems useful in light of the Mendelian theory of gene 
frequency, in which the probability of a genetic trait is an inherent property of the system 
(McPherson, 1990). 

 

                                                      
2 The conditions are that each iteration of the experiment is performed in an identical manner, and the 
outcomes of the experiment are physically independent of one another. 
3 Proponents of this approach, however, point to certain consistency criteria that ensure mathematical 
rigour in the derivation and application of subjective probabilities (see Freund, 1971 p. 39). 
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Anderson (1998) recognises at least four other probability concepts (including knowledge, 
confidence, control and plausibility) and emphasises the distinction between probability 
statements that are internal to the observer, such as the degree of confidence in a hypothesis, 
and those that are external to the observer, such as the chance or frequency of an outcome in a 
random process.  Edwards (1992) maintains that this distinction is fundamental, refusing to 
accept any definition of probability that is not external to the observer, ie does not involve a 
random choice from a defined population or the generation of events by a chance set-up. 

In practise the mathematical theory of probability (and statistics) relies upon the agreed axioms 
of probability (refer to Appendix A), and not on philosophical arguments regarding the meaning 
of the term.  However, questions of meaning are often used to discredit the use the of one 
statistical paradigm in favour of another, particularly in ecological science.  For example Power 
(1996) suggests that the classical definition of probability has no practical meaning to ecological 
risk assessment because the analyst is rarely able to numerate all the possible outcomes of an 
event within complex ecological systems.  The frequentist definition may also be inapplicable 
because it is rare to find repeated “experiments” of an ecological event.  Hampton et al (1973), 
Smith (1984), Holdway (1997) and Suter (1993) express similar sentiments. 

By contrast, the subjective interpretation of probability is inherently flexible, and places no 
restriction on its application.  It does, however, bring into question the objective value of 
assessments made on this basis (but see below).  Power (1996) warns that once a degree-of-
belief interpretation is allowed in situations where there is very little external evidence (such as 
the incidence of premature deaths caused by failures at a nuclear power station), then one must 
expect different conclusions from person to person.  This raises questions of scientific validity 
and has obvious implications for the practical application of ecological risk assessment. 

In summary it is only safe to say that a risk analyst may interpret probability in a variety of 
ways.  None of these, however, should necessarily be viewed as mutually exclusive (Cordue and 
Francis, 1994).  Ideally the problem at hand will allow a classical or frequentist interpretation 
or, at the very least, the conception of a “chance” probability model that is external to the 
observer.  In cases where this is not possible, however, the practising risk analyst may have to 
use a subjective interpretation, but at the same time be aware of its implications.  The analyst 
should also note, however, that classical statistical inference techniques cannot use subjective 
interpretations of probability. 

Conditional probability 

Irrespective of which definition the analyst employs, it is important to realise that probability 
cannot be isolated from the circumstances under which it is derived.  It is absolutely dependent 
on the data available to the analyst and the assumptions that he or she makes.  In other words all 
probability is conditional upon the underlying conditions.   

The probability of an event A, given the conditions of the experiment H, or the occurrence of an 
event B, is written as P(A/H) or P(A/B) respectively.  Many Bayesian authors (see for example 
Good 1959, Lindley 1965, or Schmitt 1969) go to great lengths to emphasise the conditional 
nature of probability, insisting that the conditioning events be explicitly recognised on each 
occasion.  This is largely because of the key role played by conditional probability within 
Bayesian methods.  In standard statistical texts, however, it is common practise to abbreviate the 
notation to P(A) when the conditional circumstances are clearly understood. 
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To elaborate on the concept of conditional probability consider Table 2.1.  This summarises 
accident statistics, occurring over the period of a year, on two hypothetical oil and gas platforms 
(H and F) operating on Australia’s Northwest shelf. 

Table 2.1 Accident statistics for two hypothetical offshore oil and gas platforms 

Accident type Platform H Platform F Total 

Serious* 2 8 10 

Minor 17 43 60 

Total 19 51 70 
 
*A serious accident might be defined as one requiring more than 3 days off work 
 
Suppose an accident investigator is to select one of these incidents at random for further 
investigation.  It can be seen that the probability of selecting a serious accident, denoted P(S), is 
0.143 (10 serious accidents out of a total of 70).  If the investigator is sent to platform H then 
the probability of selecting a serious accident, denoted P(S/H), becomes 0.105 (2 serious 
accidents out of a total of 19).  Note how, in this instance, the sample space shrinks from a total 
of 70 accidents on both platforms, to only 19 - those occurring on platform H.    

Generalising from this observation allows the following definition:  The conditional probability 
of an event S given the condition H is given by 

  ( ) ( )
( ) 0)(/ ≠
∩

= HP
HP

HSPHSP   (2.1.1) 

   
where; P(S ∩ H)  =  the function of both S and H occurring 
 P(H) =  the marginal probability of H. 
 
In this example P(S ∩ H) is 0.029 (2 out of 70), and P(H) is 0.271 (19 out of 70), giving a 
conditional probability P(S/H) of 0.105, ignoring differences due to rounding error.   

Note how division by the marginal probability P(H) acts as a normalising factor to ensure that 
the proportion of serious and minor accidents on any given platform sums to unity, thereby 
ensuring consistency with the second axiom of probability. 

Probability and objectivity 

When faced with uncertainty, most scientists turn to classical statistical techniques for an 
‘objective’ solution  The idea that subjective probability should be the key to the rational 
treatment of uncertainty is often decidedly unpalatable (Smith, 1984).  By implication scientists 
often distrust Bayesian  methods because of their extensive use of subjective probability.   

In reality most practical applications of probability entail some form of subjective input, and 
this is usually carried over into the statistical analysis.  The classical and frequentist notions of 
probability require a subjective choice of null hypothesis and significance levels (Ludwig, 
1996), ‘plausible symmetries’ and ‘repeated iterations’ (Smith, 1984).  Even the simplest of 
classical hypothesis tests involve quite fundamental subjective choices in the design and 
termination of experiments (Berger and Berry, 1988).  More generally all probability-based 
inferences rely on a statistical model, the choice of which is largely subjective. 
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Proponents of subjective probability see it as a means for introducing the beliefs of the analyst 
in a transparent manner. Bayes theorem provides a vehicle for adjusting these beliefs in light of 
the evidence (data), in a manner that is both logical and rigorous.  Lindley (1965) therefore 
believes that if two scientists differ in a question of science, rather than taste, then it is because 
they have accumulated different evidence.  Bayesian methods would allow them to pool their 
evidence and come to some mutual agreement.  Box and Tiao (1973) demonstrate this point, 
showing how two physicists in disagreement over the value of some physical constant, would 
come closer in belief following a single (presumably jointly planned and executed) experiment, 
using Bayesian inference techniques. 

None of this, however, provides particularly compelling evidence for or against the use of 
Bayesian methods in science or risk assessment.  Probability and statistical methods are usually 
no more objective than the analyst that employs them.  Quantitative Risk Assessment is 
therefore no more objective than qualitative risk assessment for having used probability and 
statistical techniques (classical or otherwise).  The strength of quantitative risk assessment, as in 
science, lies not in its objectivity but rather in the way it exposes subjective input. 

2.2  The role of probability in risk assessment 

Risk and risk assessment 

Risk is traditionally characterised by the occurrence of accidental events that have undesired 
effects.  Risk assessment is the means by which the frequency and consequences of these events 
are determined, such that 

Time
esConsequenc

Event
esConsequenc

Time
EventRisk =×=  

 
This traditional, engineering approach to risk assessment, leads to risk functions that describe 
accidental events in terms of the frequency of consequences.  The consequences in this 
approach are often expressed in terms of human injuries or fatalities (the risk assessment 
endpoints).  

Kaplan (1997) adopts a more flexible definition, emphasising that risk is defined not as a 
number, a curve, or a vector, but by three questions: What can happen?  How likely is that to 
happen?  If it does happen, what are the consequences?  The answer to these questions 
constitutes a triplet [Si, Li, Xi] where Si denotes individual risk scenarios, Li denotes the 
likelihood of the ith scenario and Xi the consequences of this scenario.   

Uncertainty regarding the likelihood of risk scenarios, together with uncertainty regarding the 
type or magnitude of their consequences, means that these components should be expressed in 
probabilistic terms, denoted [Si, p(ϕi), p(Xi)].  The definition of risk is completed by identifying 
the complete set of possible risk scenarios such that 

( ) ( ){ }ciii XppSRisk ,, ϕ= . (2.2.1) 
 
This approach encourages a broader interpretation of risk and is therefore better suited to 
ecological risk assessment, where the events in question may not be ‘accidental’ in any sense,  
nor the endpoints restricted to human fatality or injury. 
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Uncertainty and probability 

Uncertainty plays a critical role in risk assessment.  The distinguishing feature of ecological risk 
assessment is that it acknowledges uncertainty in the type, likelihood and magnitude of 
environmental impacts.  By contrast environmental impact assessment simply identifies what 
components of the environment might be affected by the activity in question.  It does not 
quantify the likelihood of an impact, nor the assessors uncertainty regarding the magnitude of 
impact. 

Uncertainty comes in many forms.  Not all of these are reducible (Faber et al, 1992) or equally 
amenable to analysis.  Figure 2.1 summarises the types of uncertainty  that occur in ecological 
risk assessment.  This document is primarily concerned with uncertainty regarding empirical 
quantities.  This is because it is concerned with the types of uncertainty that can be expressed in 
probabilistic terms, and probability is only appropriate to uncertainty about empirical quantities 
(Morgan and Henrion, 1990), and model credibility.  There are other types of uncertainty within 
risk assessments, but it is inappropriate to examine these in probabilistic terms. 

Empirical quantities represent properties of ecological systems.  To be empirical these quantities 
must be measurable, at least in principle.  In other words they can be said to have a correct 
value, as opposed to an appropriate or good value (Morgan and Henrion, 1990). 

Ecological risk assessment uses models of ecological systems.  Empirical quantities within these 
systems are represented by model variables.  Uncertainty regarding these empirical quantities, 
and the variables used to model them, occurs because:  

1. ecological systems are variable; and, 

2. random and systematic errors occur when the properties of these systems are measured. 

Almost all empirical (ecological) quantities are variable; the flow in a river, for example, will 
vary from hour to hour and from day to day.  The analyst will therefore be uncertain about the 
dilution of contaminants discharged into this river, hence there is a risk that the concentration of 
these contaminants will exceed some specified level - a typical risk assessment problem. 

Uncertainty regarding empirical quantities can be described by collecting data on the quantity, 
and using this to define an empirical distribution function, or to fit a theoretical probability 
distribution using statistical inference techniques.  Fitting an appropriate theoretical distribution 
to ecological data may be more difficult than defining an empirical distribution.  Theoretical 
distributions, however, are generally better because they smooth out the data, allow the 
generation of values outside the observed range and require less computer memory (Law and 
Kelton, 1991). 
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Figure 2.1 Uncertainty in risk assessment and the role of probability 
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The other source of uncertainty regarding empirical quantities is measurement error.  
Measurement error occurs because measurements of empirical quantities are not exact: the 
measuring instrument and the observer are inevitably imperfect.  Measurement error has a 
random component and a systematic component.  The random component depends on the  
variations between observations and the number of observations, and is usually expressed in 
terms of a sample variance or confidence intervals around the sample mean.  This component of 
measurement error can usually be minimised by taking additional measurements. 

The systematic component is defined as the difference between the correct value of the quantity 
of interest, and the value to which the mean of the measurements converges as more 
measurements are taken (Morgan and Henrion, 1990).   Systematic error can be minimised by 
careful experimental design and instrument calibration, but cannot be reduced by taking 
additional measurements.  Estimating the magnitude of systematic error may therefore involve 
some degree of subjective judgement. 

Another important source of uncertainty in ecological risk assessment is our incomplete 
understanding of the biological, physical or anthropogenic systems that are being modelled.  
This has been termed fundamental or epistemic uncertainty (Pate-Cornell, 1996).  Epistemic 
uncertainty expresses itself as model error - the most intractable of all the potential errors in a 
risk assessment.  Model error can occur in the boundaries, structure and components of a model, 
and also in the types of probability distributions used to represent uncertain empirical quantities.  
Analysts are generally aware, before the fact, that models are approximations of reality.  The 
error this causes, however, is only apparent after the fact, and cannot be addressed in a 
predictive manner.  Choosing a suitable model can be further complicated by contradictory data 
sets (Schnute and Hilborn, 1993) or when several models fit the data reasonably well but yield 
very different predictions (Moore 1996, Kot et al 1996). 

The accuracy of a model is usually determined by comparing the model’s predictions with 
reality (ground-truthing) or by comparing the results of alternative models that use different 
methods and/or assumptions (Suter 1993).  Reckhow and Chapra (1983) propose three model 
validation rules: 

1. test the model against data that reflect conditions other than those under which the model 
was calibrated; 

2. employ a statistical goodness-of-fit test to quantify the extent to which the model’s 
predictions are corroborated by observation; 

3. prepare alternative model formulations and then base the model selection on the basis of 
their performance in the tests above, and their consistency with theoretical system 
behaviour. 

Probability is used in the goodness-of-fit tests advocated by these authors, but only to test model 
accuracy.  Probability should not be seen as an attribute of a model; every model is necessarily 
an approximation of reality, and therefore definitely false (Morgan and Henrion 1990).  It is 
meaningful to say that one model is better than another, in that it produces more accurate 
predictions.  It is misleading, however, to say that model Y has a probability X (Anderson, 
1998). 

 



12 Probability, Uncertainty and Risk Assessment 

CRIMP Technical Report Number 17 

There are three other potential sources of uncertainty in ecological risk assessment: 

1. index variables – used to describe spatial or temporal components of a model, such as a 
particular location, month or year;  

2. model domain parameters – used to define the scope, resolution and boundaries of a model, 
usually by specifying the range and increments of index variables; and,  

3. value parameters – used to represent the preferences of decision makers, stakeholders or 
the general public.  For example acceptance criteria for risk estimates. 

None of these, however, are amenable to analysis using probability. 

To summarise, probability plays two main roles in ecological risk assessment: describing the 
uncertainty in variable, empirical (ecological) quantities, and describing the random 
measurement error that occurs when analysts attempt to measure these quantities.  Probability 
may also be used to determine the goodness-of-fit between model predictions and actual 
measurements, and thereby the credibility of alternative model forms. 

This report will examine the Bayesian approach to the selection of probability distributions to 
represent variable quantities and the selection of parameters that characterise these distributions. 

2.3  Contrasting classical and Bayesian statistical inference  

Classical approach 

The classical approach to statistical inference considers the parameters4 of a study to be 
unknown constants.  The value of a parameter is estimated in light of the data, which is 
considered variable (the outcome of a random process).  Statistical inferences are then made by 
comparing this estimate with sampling distributions which express how likely this estimate is 
for different values of the parameter.  The classical approach typically involves the following 
steps5: 

1. collect the data x from a random process; 

2. build a hypothetical model of the random process p(X/θ); 

3. use the data to build a test statistic s(x) = θ̂ to estimate θ; 

4. the model )ˆ/( θxp is used to estimate hypothetical sample-space properties (the sampling 
distribution) of the statistic s(x), such as how variable the statistic would be under 
repetitions of the random process; 

5. use the model to test how extreme the test statistic is (using confidence intervals or 
hypothesis tests), and therefore how good an estimate of θ it is. 

                                                      
4 Parameters are usually understood to be the central objective of any statistical analysis.  For the 
purposes of this discussion they can be thought of as the parameters that characterise a probability 
distribution  (the moments of the distribution), such as the mean or variance. 
5 Refer to Appendix B for an example of this approach. 
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This approach follows from the classical and frequentist definitions of probability adopted by 
the classical school of statistical inference.  To a classical statistician it is meaningless to speak 
about ‘the probability of a parameter value’.  Any particular value either is or is not the true one, 
and probability statements are restricted to how likely an estimate of this parameter is, given the 
observed data (Walters and Ludwig, 1994). 

An important outcome of this approach is that confidence intervals for parameter should be 
interpreted with care.  Confidence intervals are sometimes mistaken as probability statements 
about the value a parameter can take.  The correct interpretation, however, is that if the analyst 
were to repeat the experiment many times, each time calculating a 1-α confidence interval, then 
the intervals generated are expected to include the true parameter value (1-α) percent of the 
time.   

The results of a classical hypothesis test should also be interpreted carefully.  Typically a 
classical hypothesis test calculates a significance probability under the assumption that the null 
hypothesis is true (refer to Appendix B).  The significance probability is the probability of 
observing the data conditional on the null hypothesis, ie P(x/H0).  It does not, however, describe 
how probable the null hypothesis is - P(H0/x), or how likely an alternative hypothesis might be – 
P(H1/x), or necessarily imply that the alternative hypothesis produced the observed data 
(Ellison, 1996).  

Bayesian approach 

The Bayesian approach is fundamentally different: the parameters of the study are considered as 
random variables and the observed data are fixed.  Bayes theory is then used to adjust the 
analysts prior belief in the value of a parameter in light of the data.  Statistical inferences are 
then made on the basis of the analyst’s subsequent (posterior) belief in the value of the 
parameter. 

This approach is possible because the Bayesian school of statistical inference permits the 
subjective definition of probability as a measure of an individual’s degree of belief.  It is 
therefore perfectly acceptable to talk about the probability of a particular parameter value as 
being the correct one, provided we are careful about how this probability is calculated in light of 
the observed data (Walters and Ludwig, 1994).  Note, however, that the Bayesian approach does 
not preclude classical or frequentist interpretations of probability. 

The Bayesian approach can be regarded as a process through which the analyst updates his prior 
beliefs in the value of a parameter in light of the evidence provided by the data  (Pascual and 
Kareiva, 1996).  Instead of single estimates of the parameter value, the Bayesian approach 
assigns probability to a wide range of parameter values through the posterior probability 
distribution (see below).  As a result credibility intervals, the Bayesian equivalent to confidence 
intervals, have the type of interpretation that is commonly, but mistakenly, associated with 
confidence intervals; a 1-α credibility interval states that there is a (1-α) probability that 
parameter value falls within the boundaries of the interval. 

Table 2.2 summarises some of the fundamental differences in the way classical and Bayesian 
techniques interpret probability and use statistical techniques. 
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Table 2.2 Fundamental differences between classical and Bayesian approaches 

Concept or term Classical interpretation Bayesian interpretation 

Probability Proportion of equally-likely components of 
sample space with a specified attribute, or 
the result of an infinite series of trials 
conducted under identical conditions 

The observer’s degree of belief, or 
organised appraisal in light of the 
evidence (data) 

Data Random sample from an underlying 
population 

Reflection of a random world 

(1-α)%  CI This interval will include the true value of 
a given parameter in (1-α)% of all possible 
samples 

Probability that parameter value 
falls in this interval is (1-α) 

Hypothesis test P(x/H0) P(H/x) 
 

(adapted after Ellison, 1986) 
 
 

Empirical Bayesian approach 

The Empirical Bayesian (EB) approach is a variant of the Bayesian approach - it uses the 
Bayesian mathematical framework, but dips into the classical school of statistical inference in 
order to estimate the parameters of the analyst’s prior belief.   

The analyst’s prior belief about the value of a parameter is described through his or her prior 
probability distribution for that parameter.  This distribution, however, is characterised by its 
own parameters.  The analyst must specify the parameters of his prior distribution in order to 
proceed.  The essence of the empirical Bayes approach is that the analysts prior distribution is 
given a (classical) sampling interpretation and estimated from data (Solow and Gaines, 1995). 

Empirical Bayes techniques become possible when data are generated by repeated executions of 
the same type of survey, trial or random experiment, which are similar to, and precede, the one 
for which inferences are to be drawn.  These ‘prior experiments’ provide the basis for a classical 
estimation of the parameters of the prior probability distribution subsequently employed in a 
Bayesian approach.  Johnson D. H.(1989) for example demonstrates how historical survey data 
(of wildfowl populations) can be used in an empirical Bayes analysis to improve estimations of 
abundance based on the most recent survey result.  

Strictly speaking the empirical Bayes procedure is restricted to situations in which there is 
substantial prior information in the form of ‘prior experiments’.  Otherwise the procedure 
violates the assumption of conditional probability upon which Bayes theorem is based, namely 
that the prior distribution depend only on its parameters and not upon the data (Press, 1989). 
Empirical Bayesian techniques are therefore only relevant to ecological risk assessment when 
there is substantial prior information. 

The classical, Bayesian and empirical Bayesian approaches to statistical inference are 
summarised in Figure 2.2   
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Figure 2.2 The classical, Bayesian and empirical Bayesian approaches to statistical 
inference 
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3 BAYESIAN STATISTICAL INFERENCE 

3.1  Bayes theorem  

Bayes theorem describes the way an analyst should update his or her prior beliefs in the value of 
a parameter, in light of the data.  The theorem can be stated in words as 

 

Probability of a
parameter value
given the data

=

Probability of the
data given the

parameter value
x

Prior probability of
the parameter

value

Total probability of
the data

 
 

The probability of a parameter value given the data is referred to as the posterior probability.  
This distinguishes it from the prior probability held be the analyst prior to the collection and 
analysis of the data.   

Discrete variables 

The more formal definition of Bayes theorem follows from the definition of conditional 
probability given by (2.1.1), allowing for a slight change in notation 

 
( )

( ) ( ) ( )
( )AP

ABPABP
BP

BAPBAP ∩
=

∩
= /and)/( . 

 
Since P(A ∩ B) = P(B ∩ A) 

( ) ( ) ( ) ( )ABPBPBAPBAP ∩==∩ / . 
 
Bayes theorem follows easily 

( ) ( ) ( )
( )AP

BPBAPABP // =    , (3.1.1) 

 
where;  P(B/A) = posterior probability of B given A 
 P(A/B) = the conditional probability of A given B  
 P(B) = the prior probability of B 
 P(A) = the marginal (total) probability of A. 
 
We can also write 

( ) ∑= )()/( BPBAPAP    , 
 

where the summation is over all permissible values of B.  
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The marginal probability of A is a ‘normalising’ constant which ensures that the posterior 
probability integrates or sums to one (in exactly the same way as 2.1.1).  Omitting this constant 
yields the unnormalised posterior probability 

( ) ( ) ( )BPBAPABP // ∝     . (3.1.2) 
 
A key aspect of Bayesian analysis is the ease with which previous knowledge may be updated 
as new information becomes available.  Given a prior probability P(B), and an initial 
observation A1, Bayes theorem states that 

( ) ( ) ( )BPBAPABP // 11 ∝    . (3.1.3) 
   

If a second observation A2 is made independently of the first then 

( ) ( ) ( )
( ) ( ) .//

/)/(,/

12

1212

ABPBAP
BPBAPBAPAABP

∝
∝

 (3.1.4)

   
The expression (3.1.3) is the same as (3.1.4) except that P(B/A1), the posterior probability for B 
given A1, plays the role of the prior distribution P(B) for the second sample.  This process can 
be repeated any number of times, with the posterior probability playing the role of the prior for 
the next set of calculations - such that today’s posterior is tomorrow’s prior. 

An alternative approach is to treat a set of multiple observations as one ‘super-observation’, 
define the likelihood function for this set, and proceed normally (Schmitt, 1969).  In this way 
Bayes theorem is capable of utilising a frequentist interpretation of probability derived from a 
number of independent and identical trials. 

A simple ballast water example 

Ballast water management suffers from a recurrent problem: it is difficult to obtain 
representative samples of ballast water in order to test for the presence or absence of a particular 
species.  Access to a ballast tank is usually restricted, and in most cases samples can only be 
taken from a limited number of locations, such as a sounding pipe or open deck cover.   

Access restrictions of this type determine the type of sampling equipment that can be used.  
Plankton nets, for example, can be used from a deck cover but not a sounding pipe.  
Furthermore there is evidence to suggest that some sampling techniques are better at detecting 
certain species than others.  For example a recent review of ballast sampling methods (Sutton et 
al, 1998) concluded that mobile zooplankton (such as crab zoea) are under-sampled by methods 
that rely on low flow rate pumps.  As a result some ballast water samples may suffer from a 
large proportion of false negative readings; the sample indicates that the species is not present in 
the ballast water when in fact it is.  For the purposes of this example assume that a particular 
sampling procedure gives a false negative reading for a particular species6, on 30% of 
occasions. 

In some instances it is also difficult to correctly identify the species found in a sample of ballast 
water.  This is because some taxa, such as bivalve larvae, are taxonomically indistinguishable 
unless reared to a juvenile or adult stage.  Therefore there is a finite possibility of a false 

                                                      
6 False negative readings occur for many reasons, including species behaviour (phototaxis for example), 
and are therefore likely to be species specific. 
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positive result; the sample is incorrectly identified as containing a particular species, when in 
fact it does not.  For the purposes of this example assume that the identification of a sample 
gives a false positive reading on 5% of occasions. 

Figure 3.1 summarises this sampling problem with a simple event tree.  First the ballast tank is 
either infected with the species concerned (I) or it is not (U).  Second the sample identification 
procedure may give a positive result (Pos), indicating that that the species is present, or a 
negative result (Neg) indicating that it is absent.  Table C1 (Appendix C) summarises the 
conditional probabilities associated with this example. 

From a risk assessment perspective, it is important to know the probability that the ballast tank 
is infected, given that the sample has produced a negative reading.  The analyst’s prior belief  
regarding the infection status of this vessel may be based on: 

1. no previous knowledge, in which case he or she may only be willing to say that there is a 
50:50  (equi-probable) chance that the vessel is infected; 

2. the past frequency of infection, assuming this vessel has been sampled on a number of 
previous occasions (under similar conditions); 

3. a quantified assessment of infection risk. 

In any case, Bayes theorem states 

( ) ( )
( ) ( ) ( )UPUNegPIPINegP

IPINegPNegIP
/)./(

)/(
/

+
=      .  (3.1.5) 

 
Table C2 (Appendix C) illustrates the calculation with a prior infection probability of 0.5.  This 
shows that considerable uncertainty regarding the vessel’s true infection status remains after 
having taken one sample.  This is largely due to the poor power of the sampling procedure, 
reflected by the high proportion of false negatives.   

This uncertainty can be reduced by taking additional (independent) samples, in each case using 
the posterior probability generated by the previous sample as the prior probability for the next 
(Table C3).  Table 3.1 summarises the reduction in uncertainty that follows.  Under the 
conditions of this example, four negative samples are needed to be 99% sure that the vessel is 
uninfected.  In practise, however, determining the probability of a false negative and/or false 
positive reading is likely to be more difficult than implied here.  This approach also assumes 
that the probability of a false negative sample remains the same between samples.  This may not 
always be the case.  A negatively phototactic species for example, is less likely to be captured in 
later samples once the ballast tank deck cover has been removed. 
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Figure 3.1 Event tree for ballast water sampling problem 
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Table 3.1 Reducing  uncertainty by collecting more samples. 

Number of samples Probabilities 

 I (vessel infected) U (vessel uninfected) 

0 

1 

2 

3 

4 

0.500 

0.240 

0.091 

0.031 

0.010 

0.500 

0.760 

0.909 

0.969 

0.990 
 
 

Continuous variables 

Probability density functions describe the random behaviour of continuous variables.  Bayes 
theorem is applied in the same way 

)(
)()/(

)/(
yp
pylyp θθθ =   , (3.1.6) 

 
where;  p(θ/y)  = posterior probability distribution of θ given y 
 l(y/θ) = the likelihood function of y given θ  
 p0(θ) = the prior probability of θ 
 p(y) = the marginal probability of y. 
 
We can also write 

( ) ∫= θθθ dpylyp )()/(    , (3.1.7) 

 
where the integration is over all permissible values of θ.   

Note how the conditional probability p(y/θ) used in the discrete case (3.1.1), is replaced by the 
likelihood function l(y/θ) in the continuous case (3.1.6).  This does not imply that likelihood is 
simply another term for probability - the two are in fact quite separate concepts (refer to section 
3.2).  Rather the likelihood function is proportional to the conditional probability, but the 
constant of proportionality is subsumed within the normalising constant p(y). 

By omitting the normalisation constant, the posterior density is simply proportional to the 
likelihood function multiplied by the prior probability distribution for θ 

)()/()/( θθθ pylyp ∝   .  (3.1.8) 
  
The resulting posterior distribution can also be used as a new prior distribution in exactly the 
same way illustrated for discrete variables. 

The mathematics required by Bayes’ theorem is more difficult for continuous variables than for 
discrete variables.  In particular the integral in (3.1.7) only has an analytical solution in certain  
cases (refer to section 3.2).  This difficulty has led some risk analysts to eschew Bayesian 
methods on the grounds that they are laborious and cumbersome (Vose, 1996). 
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Fortunately this difficulty can be removed with the use of computers and numerical integration 
techniques.  These techniques broaden the practical application of Bayes beyond models 
dictated by mathematical convenience, and are seen by many as the key to widespread adoption 
of Bayesian methods (Smith, 1984). 

Journey survival example 

The ability of organisms to survive in the ballast tank is a key component of the ballast water 
introduction cycle.  Survivorship can be investigated by sampling the ballast tanks of a vessel at 
regular intervals over its entire journey.  This is suitable as an initial research approach but is 
not a practical long term strategy.  An alternative approach is to sample vessels at the end of the 
ballast leg of their journey, in order to confirm the presence or absence of  target species in the 
ballast water.  The objective here is to investigate a species’ life expectancy on the basis of 
presence/absence and ballast water age. 

The length of time T that a population7 is expected to survive in a ballast tank can be viewed as 
a random variable. Survival patterns between different species are known to be quite varied, but 
for some species, abundance in the ballast tank has been observed to decline exponentially with 
journey duration (see for example Wonham et al 1996, Murphy 1997).  This evidence suggests 
that an exponential distribution may be an appropriate way to model this situation. According to 
this model, the random variable T is said to follow an exponential distribution with parameter µ 
, where µ denotes the expected life expectancy, such that the probability of observing a survival 
time t is given by 









−=

µµ
ttp exp1)(   . (3.1.9) 

 
If individuals are still alive at the end of the vessel’s journey, the appropriate probability is 
provided by the right tail of the exponential distribution; the probability that the survival time is 
at least some value x 

.exp

exp11

)(1)(









−=




















−−−=

−=〉

µ

µ

x

x

xFxtP

 

 
The results of four hypothetical surveys, measuring the abundance of a single species over time, 
are summarised in Table 3.2.  Two types of data are recorded here; those that record the species 
as dead (or absent) after time t, and those which indicate that individuals were still alive after 
time x. 

 
 

 
                                                      
7 In this example population refers to the ballast tank inoculum. 
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Table 3.2 Some results from hypothetical ballast water surveys 

Survey Fate of the species  t (days) x (days) 

#1 

#2 

#3 

#4 

No live specimens found after 14 days 

No live specimens found after 32 days 

Individuals still alive after 5 days 

Individuals still alive after 8 days 

14 

32 

 

 

 

 

5 

8 
 
 
The variable of interest here is the life expectancy of the species (µ ) in the ballast tank 
environment.  The purpose of this example is to illustrate how Bayesian techniques can be used 
to quantify the uncertainty regarding this variable. 

Let us make the following assumptions: 

1. we have no prior information regarding µ for this species; 

2. the change in the abundance of this species with time can be modelled reasonably well with 
an exponential distribution; 

3. the death rate of the species was the same for each survey, remains constant over the 
duration of the journey and is proportional to the size of the population; 

4. the survivorship surveys were independent of each other. 

This example will investigate four different approaches to this problem.  In the first instance a 
uniform prior distribution (over suitably defined limits) and a non-informative prior 
distribution8 will be used for µ.  Both of these distributions are commonly used to reflect little 
or no prior information regarding the variable of interest.   

Next a fully-bounded and  partially-bounded exponential distribution will be used as the 
underlying statistical model.  The ‘natural’ domain of an exponential random variable T is 
partially bounded, ie ∞≤≤ t0 .  Biologically, however, this is not very realistic - one would 
expect a finite limit to the survival time.  This can be achieved by bounding the distribution at 
some pre-defined upper limit M such that 
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Table 3.3 summarises the prior distribution function, likelihood function, normalising constant 
and resulting posterior distribution for each of the four approaches.  The mathematical details of 
the derivation (and notation) are provided in Appendix D. 

                                                      
8 Section 3.2 explains the use and derivation of non-informative priors. 
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Table 3.3 Four Bayesian models of journey survival 
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Figures 3.2 to 3.5 plot the posterior and prior distribution functions for each of these models, 
using the data presented in Table 3.2.  The problem caused by a partially bounded model is 
apparent in Figures 3.2 and 3.4 – appreciable probability of an unrealistically high  life 
expectancy.  The uniform prior exacerbates this problem.  At first a uniform prior seems a 
sensible way to reflect no prior knowledge of life expectancy – allocating equal chance to all 
possible values of the parameter.  In this context, however, it performs badly because it 
allocates even more probability to the tail of the posterior distribution.  This leads to a very 
artificial posterior distribution when the model is bounded (Figure 3.3).  The non-informative 
prior with a bounded model (Figure 3.5) provides a better reflection of what might be expected 
in reality. 
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Figure 3.2 Journey survival model # 1: Uniform prior on support ∞<≤ µ0  

 
 
 

 

Figure 3.3 Journey survival model # 2: Uniform prior on support 1000 <≤ µ  
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Figure 3.4 Journey survival model #3: Non-informative prior on support ∞<≤ µ0  

 

 

Figure 3.5 Journey survival model #4: Non-informative prior on support 990 <≤ µ  
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None of the posterior distributions above, however, are very compelling in light of the original 
evidence (Table 3.2).  In particular survey # 2  has the effect of drawing the mode of the 
distribution away from the earlier survey results, which indicate that the species life expectancy 
lies somewhere between 8 and 14 days.  This indicates two problems with the current model: 

1. ballast age may not be a good surrogate for life expectancy when sampling ballast tanks at 
the end of the vessel’s journey.  In other words the absence of the species in the tank at the 
end of the vessel’s ballast leg indicates that the life expectancy is some (undetermined) 
value less than the age of the ballast water; 

2. the small sample size (n = 2) leads to diffuse posterior distribution which is very sensitive to 
‘outliers’.  This also exacerbates the effect of the uniform prior distribution – put simply 
there is insufficient evidence to overwhelm the influence of the prior.   

This last point is an important one.  The posterior distribution represents a compromise between 
the prior information and the data, but is increasingly controlled by the data as the amount of 
data increases.   In data sparse situations, as is often the case with ecological risk assessment, 
the prior retains considerable influence on the shape of the posterior (refer to section 3.2).   

It is very easy, however, to incorporate new information into a Bayesian analysis - the ‘old’ 
posterior distribution function can be combined with the likelihood function for any ‘new’ data 
to produce a ‘new’ posterior.  For example, assume that another 3 surveys were conducted to 
investigate the life expectancy of the same species above, each recording the absence of the 
species after a period of time y (Table 3.3). 

 
Table 3.3 Further hypothetical results from ballast water surveys 

Survey Fate of the species  y (days) 

#5 

#6 

#7 

No live specimens found after 24 days 

No live specimens found after 28 days 

No live specimens found after 21 days 

24 

28 

21 
 
 
The ‘new’ posterior distribution function becomes 

)y/()xt,/()yx,t,/( µµµ lpp ∝    , (3.1.11) 
 
where;  p(µ /t, x, y)  = the new posterior distribution function for µ given t, x and y  
 p(µ /t, x) = the old posterior distribution function for µ given t and x 
 l(µ /y) = the likelihood function for the new data y 

 
The updated posterior distribution, using journey survival model #4, is illustrated in Figure 3.6.  
Notice how the additional information has reduced the uncertainty regarding the species life 
expectancy, in particular concentrating much more probability in the region of 21 to 41 days.  
For comparative purposes the updated posterior distribution, using journey survival model #2, is 
illustrated in Figure 3.7. 
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Figure 3.6 Updated posterior distribution function using the additional data in Table 3.3 

 
 
 
 
 
 
Figure 3.7 Updated posterior distribution function using the additional data in Table 3.3 
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3.2 Components of the theorem 

The technical core of Bayes theorem is captured in equation (3.1.8).  It consists of the prior 
probability p0(θ), the likelihood function l(y/θ) and the posterior distribution p(θ/y).   

The likelihood function l(θ/y) 

The conditional distribution function p(y/θ) describes the probability of the data y, given the 
parameter θ.  When viewed as a function of θ, for fixed y, this distribution is referred to as the 
likelihood function l(θ/y).  

Likelihood is a subtle concept.  Its full implications are not clear from the usual textbook 
definitions (such as that above), and are often missed on first reading.  The conditional 
distribution function derives from a deductive process of assigning  probabilities to different 
events Ai given the same hypothesis θ.  The likelihood function derives from the inductive 
process of assigning probabilities to an event A, given different hypotheses θi.  Therefore in 
p(y/θ) the event A = y is the variable, whereas in l(θ/y) the parameter θ is the variable.  

As an example consider a sequence of Bernoulli trials in which the ith observation is either a 
success, Ai = 1, or a failure, Ai = 0, in which the probability of success, θ, is the same for each 
trial (i = 1...n).  The data in this example form a sequence (of length n) of ones and zeroes, y = 
(1, 1, 0, 0, 1, 0, ...).  The probability of any particular sequence is the product of terms θ and (1-
θ), with a θ for each one and a (1-θ) for each zero, such that 

ynyyp −−= )1()/( θθθ     . (3.2.1) 
 
where y is the number of ones in the sequence. 

In the continuous version of Bayes theorem (3.1.6), the likelihood function replaces the 
conditional probability p(y/θ) in the discrete version of the theorem (3.1.1).  This does not imply 
that likelihood is a probability function.  The conditional probability p(y/θ) describes the 
probability of the data y on a fixed parameter θ.  When considered as a function of y it defines a 
probability distribution which, when integrated over all possible values of y, equals one.  By 
contrast the likelihood function l(θ/y) is predicated on fixed data, does not give rise to a 
statistical distribution, and need not equal one when integrated over all possible parameter 
values (Edwards, 1992).  The likelihood l(θ/y) is, however, proportional to p(y/θ) such that 

( ) ( ) ynykyl −−= θθθ 1/  (3.2.2) 
 

in the example above, and can therefore be used in Bayes theorem.  The constant of 
proportionality k is arbitrary, and becomes subsumed within the normalising constant p(y) when 
used in this way. 

The inductive nature of the likelihood function underlies the central role that it plays in Bayes’ 
theorem: it is the only way in which the data y can modify the analyst’s prior knowledge of θ.  It 
also determines how well the parameter θ allows the model to describe the data (Dilks et al, 
1992).   
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In practice, however, the concept of likelihood is only reasonable within the framework of the 
model or family of models adopted for a particular analysis.  In other words it can only be 
applied to situations where the functional form of the conditional distribution function p(y/θ) is 
specified, but the parameters θ = (θ1...θn) are unknown.   

Thus in order to use Bayes’ theorem the analyst must choose the probability model which best 
suits the problem at hand.  For many ecological risk assessment problems, however, it is not 
immediately obvious which probability model is the most appropriate, and rarely can the analyst 
be confident that the chosen model is the correct one  (Gelman et al, 1995). 

Choosing the functional form of the likelihood distribution is therefore the most crucial (and 
arguably the most difficult) part of any Bayesian analysis.  It is surprising then to discover that 
this part of the analysis is often given the least attention.  Much of the debate over the use of 
Bayesian methods in ecological risk assessment is concerned with problems of the prior 
distribution function (see section 4.2), and the subjective process of choosing priors.   

By contrast many authors spend very little time justifying their choice of likelihood function, 
and rarely (it seems) is this choice questioned by reviewers, despite the fact that this can have as 
much impact on the results of the analysis as the choice of the prior distribution.   

Cox and Hinkley (1974) offer the following guidelines for choosing a probability model: 

1. the model should establish a link with any theoretical knowledge about the system in 
question, and with any previous experimental work; 

2. the limiting behaviour of the model and the system should be consistent; 

3. the parameters of the model should individually have clear cut interpretations; 

4. the model should be the simplest possible consistent with the guidelines above. 

In practise the analyst may need to consider a number of different models to find the most 
appropriate one.  This point is particularly relevant to Bayesian statistical inference, as 
emphasised by Gelman et al (1995), who view an applied Bayesian statistician as one who is 
willing to apply Bayes’ rule with a variety of different likelihood models. 

The prior distribution p0(θ) 

The prior probability distribution p0(θ) usually represents the analysts knowledge regarding the 
parameter θ prior to the analysis and collection of data.  Gelman et al, (1995), suggest that the 
prior distribution can be given two interpretations: a population interpretation in which the prior 
represents a population of possible parameter values from which θ must be drawn; or a state of 
knowledge interpretation in which the prior simply represents the analysts uncertainty regarding 
θ.  Cox and Hinkley (1974) suggest similar interpretations: 

1. a frequency distribution whose parameters reflect analysis and synthesis of existing data; 

2. an “objective” statement of what is rational to believe about the distribution given initial 
ignorance of the parameter; and, 

3. a subjective measure of what the analyst actually believes before commencing the 
assessment. 
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A population or frequency distribution interpretation implies the availability of substantial prior 
information, in particular the family of population distributions to which the prior should 
belong.  In these circumstances it is often possible to generate a specific prior distribution from 
this family, known as the conjugate prior, which has convenient mathematical properties.  (It is 
not compulsory to use a conjugate prior, merely convenient).  

Conjugate priors are constructed by interchanging the roles of the random variable and the 
parameter in the likelihood function, and then ‘enriching’ the parameters by making their values 
general and not dependant upon the current data set (Press, 1989).  By way of example suppose 
the likelihood function is binomial such that 

ynyyl −−∝ )1()/( θθθ     . (3.2.3) 
 
If θ is considered to be the random variable, l(θ/y) forms the kernel of a beta distribution.  The 
distribution is generalised by replacing the parameters y and n-y (which depend upon the data) 
with the arbitrary parameters α and β.  The density is normalised by dividing by an appropriate 
constant, here the beta function B(α, β), such that the conjugate prior distribution becomes 

11
0 )1(

),(
1)( −− −= βα θθ

βα
θ

B
p       . (3.2.4) 

 
The mathematical convenience arises because many conjugate prior distributions (including all 
members of the exponential family9) give rise to posterior distributions of the same parametric 
form.  For example employing (3.2.2) and (3.2.3) in Bayes theorem leads to the posterior 
distribution (refer to Appendix E) 
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which is also a beta distribution.  The property that the posterior distribution follows the same 
parametric form as the prior distribution is called conjugacy.  Hence the beta distribution is the 
conjugate prior of the binomial likelihood.  Appendix E summarises the conjugate prior and 
posterior distributions of some common statistical models. 

In practise the analyst is still required to evaluate the parameters of the prior distribution, α and 
β in the above example.  Typically these parameters would be unknown (unless the prior 
distribution was the posterior distribution from a previous analysis - as in the journey survival 
example), and would have to be estimated using prior information (data), in an empirical Bayes 
approach for example. 

If, however, the prior information suggests a distribution which does not belong to the conjugate 
family then this should be used.  This causes no loss of application, but is computationally more 
intensive.  In particular the integral of the posterior distribution (the normalising constant) may 
not have an analytical solution, in which case it must be evaluated using numerical methods.  
For example it is common in fisheries risk assessment to draw prior  distributions from similar 
biological populations, a process known as meta-analysis (Punt and Hilborn, 1997).  These may 
not be conjugate but if they represent the best available prior information, then they should be 
used. 
                                                      
9 The exponential family consists of the Binomial, Negative binomial, Poisson, Exponential and Normal 
distributions. 



 Bayesian Statistical Inference 

CRIMP Technical Report No. 17 

32 

A state of knowledge (‘objective’, subjective or otherwise) interpretation admits a much broader 
class of prior distributions, allowing the analysts to specify their uncertainty with any type of 
probability distribution.  It is commonly used when there is no population precedent to draw 
upon but does not exclude a population perspective.  When prior distributions have no 
population basis, however, they can be difficult to construct. The Bayesian analyst is forced to 
fit some form of distribution to his prior beliefs but, as is often the case with ecological risk 
assessment, there may be very little evidence to support these beliefs.  The analyst’s judgement 
may therefore be subjective, vague and open to debate. 

In these circumstances a prudent Bayesian may seek a prior distribution which plays a small 
role in the posterior distribution, and is quickly overwhelmed by the data.  In this way the 
analysts subjective opinion ceases to be of concern because it is quickly swamped as soon as 
much data becomes available (Edwards et al, 1963).  Mathematically this requires a prior 
distribution which is relatively uniform in the vicinity of the likelihood function (the data), and 
which does not peak sharply outside of this region.  Prior distributions with these characteristics 
are called non-informative. 

Box and Tiao (1973) emphasise that non-informative priors need not represent the analysts prior 
state of uncertainty, but can be employed as a point of reference to allow unprejudiced inference 
from the data.  Non-informative priors should therefore express the idea that little is known 
about θ, prior to what the data is going to tell us, whilst not unduly influencing what the data 
has to say.  In other words they should ‘let the data speak for themselves’ (Gelman et al, 1995).  

In Bayes’ theorem the data influence the posterior distribution only through the likelihood 
function l(θ/y).  Box and Tiao (1973) describe a technique for obtaining non-informative priors 
based on the metric φ(θ) under which the likelihood function is data translated - that is the 
likelihood curve for  φ(θ) is completely determined a priori except for its location, which 
depends on the data yet to be observed.  Figure 3.4 demonstrates this principle for the binomial 
and Poisson models.  Under the original metric θ the spread, shape and location of the 
likelihood curve varies with the data y.  Under a suitable transformation φ(θ), however, the 
likelihood curves are approximately constant except for location.  

By taking  φ(θ) to be locally uniform (in the vicinity of the likelihood curve) the resulting prior 
distribution for θ satisfies all of the required criteria for a non-informative prior.  Box and Tiao 
(1973) go on to demonstrate that the prior distribution for a single parameter θ is therefore  
approximately non-informative if it is taken proportional to the square root of Fisher’s 
information measure10.  That is 

)()( 2
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0 θθ Jp ∝     , 
 

where J(θ), Fisher’s measure of information about θ, is defined as 











−= 2

2

/

)/(log)(
∂θ

θ∂θ
θ

ylJ E
y

  . 

                                                      
10 This is Jeffrey’s’ rule, after Jeffreys (1961) 
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Figure 3.8 Data translated likelihood curves for the Binomial and Poisson means 
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Non-informative prior distributions imply that the analyst is able to make a start in uncertain 
situations, safe in the knowledge that his or her prior convictions will not unduly bias the results 
of the assessment11.  This may not always be true however.  In certain circumstances they can 
lead to improper posterior distributions (Gelman et al, 1995).  They are also sensitive to the 
measurement scale (Punt and Hilborn, 1997) although it may not always be obvious which scale 
is the most appropriate.   

Edwards et al (1963) describe a number of other situations where a non-informative prior may 
be inappropriate: 

1. the analyst has a strong prior conviction that the value of θ lies in a region where the 
likelihood has a very small value, and is unpersuaded by the evidence;12 

2. the data produce a likelihood curve which is very diffuse; and, 

3. observations are so expensive that the analyst cannot afford to collect enough data to ensure 
that the likelihood function is sufficiently well defined. 

In defence Box and Tiao (1973) point out that scientific investigation is not usually undertaken 
unless the data supplied by the investigation is likely to be considerably more precise than the 
currently available information.  They do concede, however, that each case should be 
considered on its merits - a point also taken by Gelman et al (1995) who warn against the 
automatic use of ‘reference’ non-informative priors, advocating a case by case approach. 

The posterior distribution p(θ/y) 

Bayesian inference allows the analyst to pass from the prior distribution to the posterior 
distribution by way of the data (represented by the likelihood function).  The posterior 
distribution p(θ/y) represents the total uncertainty regarding θ in light of the available data and 
the analysts prior beliefs.   

The variance of the posterior distribution (a measure of uncertainty) should be less than that of 
the prior because it incorporates the additional information provided by the data.  This is well 
illustrated by the binomial model; with a uniform prior distribution the prior variance is 1/8, 
whilst the posterior variance is given by 

)2()1(
4
1

2
)(

2 ++

++−

nn

nyny
 .   (3.2.6) 

 
The value of (3.2.6) quickly diminishes as the data (represented by the number of trials - n) 
increases, underlining the increasingly dominant role played by data in the posterior 
distribution.  In certain situations the variance of the posterior can be similar to or even larger 
than the prior, although this usually indicates an error in either the sampling model or the prior 
distribution (Gelman et al, 1995). 

 

                                                      
11 Unfortunately the same cannot be said for the choice of the likelihood model. 
12 The experiment which produced the likelihood curve may be in error for example. 
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In an ecological risk assessment the posterior distribution function can be used in one of two 
ways: 

1. to provide a direct estimate of risk, where the endpoint of the assessment is some critical 
value of θ; or, 

2. to represent uncertainty regarding an important model parameter, that is subsequently 
translated into an expression of risk through the model output. 

The first approach is illustrated in Figure 3.9 which shows the posterior distribution of the 
Normal mean p(θ/σ, y) when a sample of 16 observations has been taken whose average value 
is 10.  The distribution was derived with a locally uniform, non-informative prior (refer to 
Appendix E) and therefore represents the knowledge of an analyst who, prior to the collection 
of data, was indifferent to the value of θ in the relevant range.  If the endpoint of the assessment 
was some critical value of θ, for example 12, then the posterior distribution provides a direct 
estimate of the risk that this value will be exceeded, in this case 0.159. 

The risk estimate in Figure 3.9 was made using standard tables of the Normal probability 
integral.  Probability estimates from the posterior distribution, however, are not always so 
readily derived.  Figure 3.10, for example, shows the probability of a species’ life expectancy 
exceeding 40 days, based on the journey survival model (#4) developed in section 3.1.  Here the 
posterior distribution function  p(µ/t, x, y) has the kernal of an inverted Gamma distribution, but 
does not posses a closed integral form on limits other than (0, ∞).  The probability of µ 
exceeding any specified value must therefore be calculated using numerical integration 
techniques - in this instance Simpson’s Rule was used. 

The second approach use Monte Carlo simulation techniques to return values of a parameter to a 
risk assessment model.  This procedure is repeated many times; on each iteration a value is 
randomly selected from the posterior distribution and returned to the risk assessment model.  
Tabulation of the model output for each iteration allows the effect of parameter uncertainty on 
the risk estimate to be investigated.   

A simple Monte Carlo simulation of the journey survival problem (section 3.1) is illustrated in 
Figures 3.11 and 3.12.  Figure 3.11 tabulates the results of 1000 samples selected at random 
from the posterior distribution function of journey survival model #4.  Because the posterior 
distribution is bounded such that 100≤µ the simulation rejects all samples from the parent 
distribution (inverse gamma) which result in value of µ greater than 100 (refer to Appendix F).   
Each of the subsequent samples was then used in a simple model of ballast tank survivability 

)/exp(0 µtPPt −=     , (3.2.7) 
 
where Pt represents the ballast tank population after a journey of t days, P0 represents the initial 
inoculum and µ is the life expectancy of the species.  Figure 3.12 tabulates the model output for 
each iteration based on a journey duration of 40 days and initial inoculum of 1000.  An estimate 
of risk can be quickly drawn from this size-frequency distribution.  For example the probability 
of there being at least 200 individuals (20% of in the initial inoculum) still alive at the end of the 
journey, is given by the number of iteration on which this occurred divided by the total number 
of iterations; in this example approximately 623/1000 = 0.62.
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Figure 3.9 The posterior distribution function p(µ/y)  

 
 
 
 

Figure 3.10 Risk assessment using the posterior distribution function p(µ/t, x, y) 
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Figure 3.11 Monte Carlo simulation of p(µ/t, x, y) on the support 0 < µ < 100  

 
 
 
 
 
Figure 3.12 Monte Carlo simulation of the ballast tank population after a 40 day journey 
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Notice how Figure 3.11, the size frequency distribution of µ, is similar to Figure 3.6, the 
original posterior distribution function.  This occurs because Monte Carlo simulation faithfully 
reproduces the distribution from which it samples given enough iterations13.  This allows the 
analyst to propagate variable uncertainty through a deterministic model such as (3.2.7) in order 
describe a range of possible outcomes (Figure 3.12) and thereby an estimate of risk.   

The accuracy of the simulation can be demonstrated by comparing P(µ > 40) calculated by 
numerical integration techniques with the simulation size-frequency distribution.  The latter 
gives P(µ > 40)  = 252/1000 = 0.252 which is comparable to the 0.220 calculated using 
Simpson’s Rule in Figure 3.10.  The accuracy of the simulation can be improved by increasing 
the number of iterations at the cost of increased computer time.  Note, however, that if the 
simulated values of the parameter are bounded (as in Figure 3.11) the resulting size-frequency 
distribution must be used cautiously.  For example the moments of the simulated distribution 
may not accurately reflect the moments of the parent distribution - the variance in particular is 
likely to be reduced.   

                                                      
13 A more efficient variant of the Monte Carlo approach is Latin Hypercube Sampling (LHS). 



Ecological Risk Assessment & Bayes Theorem 

CRIMP Technical Report Number 17  

39

4 ECOLOGICAL RISK ASSESSMENT & BAYES THEOREM 

4.1  Why use Bayes in ecological risk assessment? 

Bayes theorem has recently witnessed something of a revival.  This is probably due to the 
growing availability of computing resources and efficient numerical integration procedures, as 
predicted by Smith (1984).  Classical statistical inference has attracted a great deal of criticism 
in the growing literature that has followed this revival, particularly in its application to 
ecological science.  When following this literature it is easy to forget how spectacularly 
successful classical statistical practise is (Anderson, 1998), and how well it has served 
ecologists in the past.  The question arises then, why use Bayesian approaches at all? 

Ecological risk assessment presents a number of practical and philosophical challenges to 
statistical inference: 

1. the interpretation of probability in the context of ecological science; 

2. the ‘true’ value of biological parameters; 

3. modelling complex, often poorly defined systems, with little data; 

4. drawing inferences from the multi-parameter models used to describe these systems; 

5. providing risk estimates with a proper description of uncertainty; 

6. describing the results of the assessment to stakeholder forums who may not be well versed 
in statistical science; and, 

7. the iterative development of risk assessment models and the predictions they make. 

Bayesian statistical inference offers an alternative, and sometimes better, approach to these 
challenges.  It is not, however, a mutually exclusive alternative – ultimately the statistical 
approach adopted by the analyst should be dictated by the problem and data at hand. 

Ecological risk analysts may be faced with problems over the interpretation of probability (see 
section 2.1).  Frequentist and classical interpretations of probability are often criticised because 
they have little intuitive meaning in ecological science. For example when attempting to assess 
the possible consequences of an event such as chemical discharge to the environment, the 
analyst can neither enumerate a complete set of mutually exclusive outcomes, nor reproduce the 
event enough times to estimate the frequency of each outcome.    

Ideally probability should be conceptualised as characteristic of a random process, external to 
the observer.  The process may involve repeated iterations of a trial, random selection from a 
defined population, or a sample space divide into n mutually exclusive outcomes.  The analogy 
need not be direct, however.  If the problem can be conceptualised in these terms, then that is 
sufficient rationale to undertake a simulation analysis using frequentist or classical 
interpretations of probability. This rationale is behind many of the simulation models used in 
ecological risk assessment, although this may not be explicitly acknowledged.  
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 Classical statical inference does, however, exclude a subjective interpretation of probability.  
This interpretation is very flexible and it seems foolish to exclude it from the risk analyst’s 
toolkit.  Power et al (1994) suggest that subjective probability is intuitively appealing to 
analysts seeking to make inferences about complex ecosystems, but dismiss its role in 
ecological risk assessment on the grounds that objective facts no longer provide a means of 
sorting one assessment from another.  But this is precisely what Bayes theorem achieves by 
objectively adjusting the analysts prior convictions in light of the evidence gathered to date.   

Furthermore Bayes theorem allows the analyst to make probability statements about unique and 
singular systems (Crome et al, 1996), confident that these can be readily adjusted as and when 
more information becomes available.  The Bayesian approach is therefore eminently suited to 
the iterative nature of ecological risk assessment wherein risk estimates are made, but then 
tested, and continually updated, against the results of monitoring strategies.  As this process 
continues each successive iteration produces a more refined risk estimate (Jaykus, 1996).  Such 
iterations are easily performed within a Bayesian framework because of the ease with which the 
posterior distribution can be updated (as demonstrated by the journey survival example). 

Perhaps a more compelling critique of classical statistical techniques in ecological science lies 
in their approach to parameters estimation.  Classical estimators typically assume that there is a 
true fixed value for each parameter of interest and, for example, the expected value of this 
parameter is the average value obtained by random sampling repeated ad infinitum.  The 
physical and biological parameters of ecological systems, however, are usually variable – no 
two organisms are exactly alike, and even if they were, evolution implies that their offspring 
would be measurably different (Ellison, 1996).   

By contrast Bayes theorem recognises that the parameters of a study are variable and attempts to 
emphasise this through the posterior distribution.  Note, however, that whenever a bayesian uses 
independent and identically distributed likelihoods there is an implicit assumption that the 
parameter(s) of concern take a single value.  What the posterior distribution reflects is the 
uncertainty in the data when making inferences about this value (pers comm Andre Punt).  On 
reflection the distinction between classical and Bayesian approaches on this point may not be as 
large as some authors imply. 

The posterior distribution does, however, provide a full description of possible parameter 
values, and all inferences are based on this (Pascual and Kareiva, 1996).  This is particularly 
important to risk assessors because scalar probability statements (point estimates) rarely provide 
adequate descriptions of risk.  Power et al (1994), for example, strongly advocate complete 
distributional descriptions of risk rather than point estimates because: 

1. knowledge of the variability surrounding an estimate of risk will change perceptions about 
its acceptability; and, 

2. empirically produced data does not allow the analyst to assign probability outside the range 
of the data, and since many risk assessments involve extreme events, it is particularly 
important to have a complete description of the data in the form of an appropriately fitted 
probability model. 

Via the posterior distribution function, Bayes theorem immediately directs the analyst to the full 
distributional qualities of the parameter(s) in question, and is therefore well suited to the risk 
assessment process. 
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This treatment of parameter uncertainty is all the more important to ecological risk assessment 
because of the heavy emphasis it places on modelling.  Most environmental systems are in some 
sense ‘badly defined’ (Young, 1983) and if so, are best modelled within a probabilistic 
framework.  The parameters of these models will be inherently uncertain and should only be 
defined in terms of statistical probability distributions.   

Deterministic models can only  provide adequate descriptions of ecological systems in the 
simplest of cases.  This is because  the expected value of a function E[f(A)], with a set of A of 
randomly varying parameters, is only equal to the value of the function using the expected value 
of each parameter, when f(A) is a simple linear function of the A terms (Gardner and O’Neill, 
1983).  The Bayesian emphasis on the full distributional qualities of parameter uncertainty is 
well suited in this context.  The analyst is able to draw samples from the posterior distribution 
of each parameter and thereby propagate the full range of uncertainty through the analysis rather 
than use point estimates.  Of course all of this is possible with classical statistical techniques, 
the advantage of Bayes is merely one of emphasis and the ease with which the posterior 
distributions can be updated. 

Another potential advantage of Bayesian inference, which is often cited in the literature, is the 
ease with which incidental or ‘nuisance’ parameters are dealt with.  Most ecological models 
involve more than one unknown parameter, but in many cases the analyst is only interested in a 
sub-set of these, possibly just one.  Similarly in ecological risk assessment the analyst is only 
concerned with the distributional qualities of the endpoint but is usually faced with other 
(uncertain) parameters that have some bearing on this. 

A large number of nuisance parameters make model calibration difficult (Stow  et al, 1997).  
Furthermore inferences regarding the parameter of interest can only be made with classical 
techniques if the sampling distribution of the parameter(s) of interest are independent of the 
nuisance parameters; or sufficient statistics exist for all the parameters concerned (Box and 
Tiao, 1973). 

A Bayesian does not worry about the sampling distribution of point estimates because 
inferences regarding the parameter of interest θ1 are based entirely on its posterior distribution.  
This can be obtained from the joint posterior distribution of θ1 and a nuisance parameter θ2 by 
simply ‘integrating out’ the latter, thus 

( ) ( ) 2211

2

y/,y/ θθθθ dpp
R
∫=   ,    (4.1.1) 

 
where R2 denotes the appropriate range of θ2

14.  Alternatively the joint posterior distribution 
function can be factored to yield 

( ) ( ) ( ) 22211 y/y,/y/
2

θθθθθ dppp
R
∫=    .   (4.1.2) 

 
Note also that the integral in (4.1.2) need not be evaluated explicitly:  inferences regarding θ1 
can be made by first drawing θ2 from its marginal distribution, and then θ1 from its conditional 

                                                      
14 Appendix G provides an example of this approach for a normal random variate whose mean and 
variance are unknown. 



 Ecological Risk Assessment & Bayes Theorem 

CRIMP Technical Report No. 17 

42 

posterior distribution, given the value of θ2, thereby performing the integration indirectly 
(Gelman et al, 1995). 

Applying Bayesian techniques to complex, multi-parameter models, however, is not entirely 
straight forward.  In the first instance the analysts must specify a prior distribution function for 
each of the parameters in the model (with all the attendant problems that this can entail) and 
must also account for any correlation between these distributions (pers comm Andre Punt).  
Thus Bayesian techniques may not be any easier to apply than classical inference techniques in 
this context. 

Bayesian techniques are often quoted as being superior to classical techniques when data are 
scarce.   Good (1959) notes that maximum likelihood estimation can give absurd results with 
small samples.  Similar problems occur in mark and recapture experiments with low recapture 
numbers (Gazey and Staley, 1986), with data-poor linear model analysis (Reckhow, 1996), and 
with animal surveys (Johnson 1977, 1989).  In each of these cases the authors suggest that 
Bayesian approaches are demonstrably better than their classical counterparts.  In data scare 
situations, however, the prior distribution function exerts a strong influence on the shape of the 
posterior distribution (see for example the journey survival model in section 3.1).  The efficacy 
of the analysis is therefore largely dependent on the prior distribution.  This may not be a 
problem if there is sufficient evidence to support one prior over another.  In situations where 
data are truly scare, however, this may not be the case, and the results of the assessment should 
be assessed accordingly15. 

Finally, some authors suggest that the posterior distribution function provides a common sense 
interpretation of the uncertainty surrounding a parameter or risk estimate, and thus the results of 
a Bayesian analysis are easier to interpret by the laymen.  This assertion is usually supported by 
reference to the cumbersome definition of confidence intervals derived under classical 
techniques (Ellison, 1996).  Indeed the requirement for ‘plain English’ results is reason enough 
for some to adopt Bayesian techniques (see for example Crome et al, 1996).  This is an 
important point because ecological risk assessment is often conducted for decision makers and 
stakeholders who may not be familiar with the finer points of statistical science.  However, the 
extent to which Bayesian results are easier to interpret than classical results is debateable.  
Classical statistician might argue that a confidence interval that is stable under a variety of 
different models, is no harder to interpret than a number of posterior distributions (pers comm 
Glen McPherson).   

4.2 Some thoughts on the current debate 

The current debate between the classical and Bayesian school of statistical inference revolves 
largely around two elements (Dennis, 1996): 

1. the quantification of prior beliefs in the form of a prior probability distribution, and the 
incorporation of those beliefs into a data analysis; and, 

2. the key role played by likelihood function in a Bayesian analysis, at the expense of 
alternative techniques. 

                                                      
15 It is interesting to note that all but one of the authors cited here uses empirical bayesian techniques in 
their analysis.  This suggests that data might not be as ‘scare’ as the authors imply. 
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At first sight this debate only seems relevant because ecological risk assessment utilises the 
concept of probability.  There is, however, a much more important reason: ecological risk 
assessment is becoming increasingly popular because it is seen as a means of producing 
scientifically objective assessments (Rodier and Zeeman, 1994), divorced from subjective 
judgement (Holdway, 1997).   

These assertions are, of course, nonsense.  Furthermore classical statistical techniques are no 
more objective than Bayesian ones.  However, the extent to which ecological risk assessment 
represents ‘good science’, and a transparent and robust decision making framework is intimately 
linked to the statistical procedures employed by the analyst. 

The use of prior distributions 

The prior distribution is arguably the most controversial aspect of Bayesian inference; a point 
long recognised by Bayesians (Reckhow 1996, Edwards et al 1963).  Many classical 
statisticians distrust Bayes’ theorem because it requires a prior distribution and they are 
suspicious of injecting subjective prior belief into the process of statistical inference. 

Some of this controversy stems from the different interpretation of probability held by the two 
schools of statistical inference.  Statisticians that assert probability as a true, real and objective 
phenomena are likely to object to the use of a prior probability distribution, particularly one 
based purely on subjective belief (see for example Edwards, 1972).  Analysts that allow broader 
definitions of probability may have no problem accepting prior probabilities, particularly where 
there is good evidence to support them. 

By the same token, however, classical and frequentist interpretations of probability are not 
without their detractors.  Holdway (1997), for example, points out that projects which require 
ecological risk assessment cannot be replicated because individual ecosystems are unique, thus 
the frequentist requirement for repeatability is inevitably compromised.  Subjective, or 
‘evidence based’ (Kaplan, 1997),  interpretations of probability are therefore more appropriate 
to ecological risk assessment. 

Whilst these arguments are not without merit, there is little evidence to suggest that risk analysts 
choose one probability model over another because of problems regarding interpretation.  
Ecological risk analysts in particular are usually faced with much more pressing problems than 
the theoretical foundation of the probability concepts they employ.  In practise any workable 
probability model is a useful one.   

That is not to say that the analysts interpretation of probability should be ignored, rather if the 
interpretation allows a workable model to be generated, then this is usually a good start.  Having 
said this, there are two reasons why prior probabilities should be treated cautiously by 
ecological risk analysts: 

1. the psychological evidence suggests that humans are quite bad at estimating probability 
(Hampton et al, 1973).  This is particularly pertinent to risk assessment because an expert’s 
judgement of risk is as fallible as the public’s; both are strongly influenced by knowledge 
and dread (Slovic, 1987)16; and, 

                                                      
16 Substantive research has shown that ‘experts’ and laymen significantly overestimate the risks 
associated with unfamiliar activities, particularly if they are afraid of them (for example nuclear power 
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2. the parameters of the prior distribution (particularly the variance) can have an important 
bearing on the results of the analysis, even in the presence of strong evidence.  Edwards  
(1996) demonstrates how over-confident prior information, that contradicts the evidence, 
can give rise to misleading results - in this instance even more confidence in the posterior 
distribution. 

Additional controversy surrounding the use of prior distributions often occurs when there is 
very little information on which to base prior beliefs.  The analyst may be left to guess at 
important parameters such as the variance of the distribution, which of itself has little intuitive 
appeal (see for example Dilks et al, 1992).  The problem can be exacerbated when prior 
distributions are specified for model parameters which are difficult (or impossible) to measure.  
For example in fishery risk assessments prior distributions are commonly specified for the 
virgin or pre-exploited biomass of the stock (see for example Punt and Walker, 1997).  There is, 
however, no direct way of measuring this parameter – inferences can only be made with the 
assistance of a fisheries model.  Punt and Hilborn (1997) accordingly recommend that 
considerable care is taken when specifying the prior.  Rarely, however, does one see evidence of 
this in the literature. 

The analyst may be able to avoid these problems by considering alternative model structures 
relative to the parameters that require prior distributions, and casting prior information in a form 
which is readily modified by the sample information (Sharefkin, 1983). The latter will usually 
involve the use of non-informative priors in the sense of Box and Tiao (1973), in other words a 
prior that provides little information relative to what is expected to be provided by the 
experiment (or sample).   

The likelihood function and falsification principles 

In ecological risk assessment, the form of the likelihood function reflects the analyst beliefs’ 
concerning fundamental ecological processes.  The likelihood function is therefore a reflection 
of model (epistemic) uncertainty, and as noted in section 2.2, this is the most intractable of all 
uncertainty in the risk assessment process.   

Gardner and O’Neill (1983) suggest that the likelihood function should be chosen on the basis 
of the probabilistic properties of the system in question, the empirical distribution of data, and 
any information on the expected distribution of system behaviours.  They also note, however, 
that this type of information is seldom available.  Accordingly the form of the likelihood 
function may be the most subjective choice in any ecological risk assessment.  Unfortunately 
there is no easy solution to this problem.  Gelman et al (1995) advocate comparing different 
likelihood models within an analysis.  Again, however, it is rare to see this policy adopted in a 
risk assessment17, presumably because of time and cost constraints. 

It is important to note that both the classical and Bayesian schools suffer from the same problem 
here: the choice of model form - be it the form of the likelihood function (Bayesian) or the form 
of the sampling distribution (classical).  Dennis (1996), however, suggests that there are very 
real differences because Bayesian models are less vulnerable to falsification (in the sense of 
Popper’s scientific method).  This aspect of the debate is absolutely crucial because it is only 
through rigorous testing of risk assessment predictions, that ecological risk assessment can 

                                                                                                                                                            
and genetic engineering).  By contrast they typically underestimate the risks associated with familiar 
activities such as smoking or drinking. 
17 See Crome et al (1996) for a notable exception. 
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defend itself against accusations of being pseudo-quantitative or pseudo-scientific nonsense 
(Holdway, 1997). 

Dennis (1996) asserts that the classical approach to statistical inference (refer to section 2.3) 
places the emphasis on the model of the random process that is assumed to generate the data.  
The main purpose of the predictions made by the classical statistician is therefore to challenge 
this model.  If the actual data produce outcomes which are extreme under this model, then the 
model itself is suspect.  By contrast the Bayesian approach places its emphasis on the variability 
of the parameter.  Dennis therefore suggests that it is more difficult for a Bayesian statistician to  
judge his or her models in light of extreme values – what is at fault, the model or the prior 
distribution?  

Dennis’ arguments are well made (particularly in light of the growing tide of anti-classical 
sentiment in the ecological risk assessment literature) but they are a little simplistic.  In the first 
instance classical inference tests do not always provide unambiguous evidence for or against a 
particular model.  In Appendix B for example a classical hypothesis test is conducted on 
relationship between Polychlorinated Biphenyl (PCB) concentrations and egg shell thickness.  
Assuming a normal linear regression model, the slope of the regression line was found to be –
0.00028.  A test of the null hypothesis that there is no relation between the PCB concentration 
and egg shell thickness (ie slope of the regression line = 0) resulted in a test statistic value of –
2.08 with significance probability 0.042.  This is sufficient to reject the null hypothesis in 
question at the 95% significance level – but only just.  There are two potential problems with 
this result: 

1. it is not very conclusive, indeed omitting a single data point results in a test statistic value 
of –1.256 with a significance probability of 0.214 (refer to Appendix B).  This suggests that 
there is now insufficient evidence to reject the null hypothesis at the 95% significance level 
– what is at fault the data point or the model?; 

2. it is dichotomous (the evidence is either sufficient or insufficient) and therefore open to 
misinterpretation. An inexperienced analyst might not realise that variability in the data can 
have an important bearing on the results of analysis, as in the case above.  This can lead to 
erroneous conclusions of zero risk which are not in fact warranted (Hill, 1996). 

Dennis (1996) also seems to imply that a residual-based diagnostic analysis (to ascertain 
whether or not a model makes accurate predictions) is not possible with a Bayesian approach.  
There is no reason to believe, however, that model predictions based on bayesian inference 
techniques are any less amenable to a diagnostic analysis than model predictions based on 
classical inference techniques. 

Perhaps what is more important is that a model is compared against new information (as 
opposed to the information against which it was calibrated), and makes bold predictions capable 
of refutation (Corkett, 1997).  In this context testing the accuracy of models  is more concerned 
with model structure, than with which school of statistical inference the analyst adheres to.  
Fisheries risk assessments, for example, both classical and Bayesian, suffer the same problems 
of refutation (Collie, 1988).  The credibility of ecological risk assessment lies in continually 
ground-truthing its predictions.  The objective is to ensure that the risk assessment models 
remain ‘well corroborated’ until such time as they are falsified.  In order to do this the models 
must be formulated so that they are relevant to the problem, and make predictions that can be 
readily tested. 
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5 CONCLUSIONS & SUMMARY 

This document has examined Bayesian statistical inference techniques with a view to their use 
in the ballast water risk assessment currently being developed by CRIMP.  This document was 
motivated by the fact that a quantitative assessment of ballast water risks must use inductive risk 
assessment techniques (because there is no relevant database on which to base empirical,  
frequentist techniques) and may have to employ subjective interpretations of probability (which 
is not possible with classical inference techniques). 

The use of subjective probability in ecological risk assessment often raises questions of 
scientific validity – many statisticians discourage the use of subjective probability on the 
grounds that it is not ‘objective’ and therefore unscientific.  It is important to recognise, 
however, that all statistical inference involves a number of important subjective decisions.  For 
example one of the most important judgements that must be made is the functional form of the 
probability model(s) used – be it the likelihood function (Bayesian) or the sampling distribution 
of the statistic (classical).  In either case this decision is largely subjective.   

The use of subjective probability in quantified ecological risk assessment can therefore hardly 
be dismissed as unscientific – all statistical approaches to uncertainty and risk rely on some 
subjective input.  Consequently appeals for objectivity do not provide a very compelling case 
against the use of Bayesian methods in ecological risk assessment. 

Conversely the use of classical inference techniques in ecological science has been criticised on 
the grounds that: 

1. frequentist and equi-likelihood interpretations of probability are hardly ever applicable to 
ecological systems; and, 

2. classical estimation techniques assume that a single true parameter value exists, when in 
reality most physical and biological parameters are inherently variable. 

In practise, however, probability need only be conceptualised in frequentist or equi-likelihood 
terms.  The analogy need not be direct for the probability model to be useful one – indeed in 
most classical risk assessment simulations it hardly ever is.  Furthermore Bayesian analysts 
make very similar assumptions regarding single parameter values (albeit implicitly) whenever 
they assume independent and identically distributed likelihood functions.  Again there is very 
little to distinguish between the two statistical paradigms on these grounds. 

Bayesian techniques are often cited as being well suited to complex, multi-parameter models, 
which are sometimes needed in ecological science, because of the ease with which nuisance 
parameters can be integrated out of the joint posterior distribution function.  This may be true 
with a limited set of parameters (say 2, 3 or 4) but in order to derive the joint distribution 
function of a large number of parameters, the analyst must first assign prior probability 
distributions to each parameter and then account for any correlation between them.  This may 
prove no simpler than performing a classical simulation of the same multi-parameter model. 
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Bayesian techniques have also been quoted as producing ‘common sense’ interpretations of 
uncertainty, and as being superior to classical estimation methods in data sparse situations.  The 
first of these arguments, although important to ecological risk assessment, is far from proven.  
The literature does not appear to provide any conclusive evidence to support the contention that 
lay-persons are able to interpret the results of a Bayesian analysis any better than the results of a 
classical analysis (for example in the form of a controlled experiment).  

Bayesian techniques can provide useful results in data sparse situations (that often characterise 
ecological risk problems), but this is very much dependant on the ‘accuracy’ of the prior 
distribution function.  If data are truly sparse the likelihood function may be very diffuse, and in 
these situations the prior distribution function (even of a non-informative prior) exerts 
considerable influence on the shape of the posterior distribution.  Since the functional form 
assumed for the likelihood function ultimately determines the shape of a non-informative prior, 
the resulting posterior is likely to prove a very subjective interpretation of the information 
contained in the data.  Data poor situations may therefore pose considerable problems to 
Bayesian and classical ecologists alike. 

Bayesian posterior distributions can, however, be updated very quickly as and when more 
information is made available to the analyst.  As such Bayesian techniques are well suited to the 
iterative nature of quantitative risk assessment whereby risk estimates are made but then 
continually adjusted with time.  Furthermore the Bayesian posterior distribution immediately 
directs the analyst to the full distributional qualities of any parameter estimate, as opposed to 
point estimates, confidence intervals or dichotomous hypothesis-test results.  Equivalent 
distribution qualities can be achieved with classical techniques by simply estimating the 
moments of the appropriate distribution, but the approach is not as direct as in the Bayesian 
case. 

If the case for or against Bayesian techniques in quantified ecological risk assessment rested 
solely on the arguments above, one might conclude that Bayesian approaches had a very slight 
edge on more traditional classical approaches.  There remains, however, the issue of the prior 
distribution.  In situations where there is sufficient data to produce a well defined likelihood 
curve, the potential problems associated with a prior distribution can usually be avoided by 
using a non-informative prior.  Similarly if the data allow a frequency interpretation for the 
prior, whose parameters represent the synthesis and analysis of existing data, then the analyst is 
unlikely to be criticised for adopting a Bayesian approach.   

In data scare situations, however, including those situations in which there is very little evidence 
to support the analyst’s prior beliefs, Bayesian risk assessments are probably less repeatable 
than classical approaches.  It is difficult therefore to define when and where Bayesian 
approaches are better suited to quantitative ecological risk assessment than more traditional 
approaches.  On balance each case is probably best approached on merits bearing in mind that: 

4. both classical and Bayesian risk assessments require important subjective decisions of the 
analyst – the extent to which these decision dominate the analysis, however, is dependant on 
the availability and quality of data; 

5. classical inference techniques cannot be used with subjective interpretations of probability, 
and since this is a valid component of the risk analyst’s tool box, Bayesian techniques form 
an important alternative approach to quantified ecological risk assessment; and, 
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6. Bayesian statistical inference is well suited to the iterative development of quantitative risk 
assessment and quickly emphasises the full distribution qualities of uncertain parameters.  
The results of a Bayesian analysis, however should be judged in light of the data that was 
available to the analyst and the extent to which an independent analyst might arrive at the 
same or similar conclusions. 
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APPENDIX A THE AXIOMS OF PROBABILITY 

The purpose of any axiom system is to allow fruitful mathematical representations of the real 
world.  Classical examples include the axioms of Euclidean geometry regarding lines and points 
and the subsequent deductions regarding geometrical figures (Lindley, 1965).    

In what follows the probability of an event A (eg an observation or outcome of an experiment) 
is written as P(A), the probability of an event B as P(B) and so forth.  The letter S represents the 
set of all possible outcomes of a system or experiment (the sample space). 

Axiom 1 

The probability of any event is a non-negative real number.  This is P(A) ≥ 0 for any subset A of 
S. 

Axiom 2 

P(S) = 1 

Axiom 3 

If A1, A2, A3, ....... is a finite or infinite sequence of mutually exclusive subsets of S then: 

P(A1 ∪ A2 ∪ A3 ∪ ......) = P(A1) + P(A2) + P(A3) + ...... 
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APPENDIX B CLASSICAL INFERENCE EXAMPLE  

The data displayed Figure B1 are taken from the Open University (1995) but were originally 
published in Risebrough (1972).  The data show the thickness of 65 Anacapa pelican eggs (in 
millimetres) plotted against the concentration (in parts per million) of Polychlorinated Biphenyl 
(PCB), an industrial pollutant. 

 
Figure B1 Shell thickness and PCB concentrations measured in 65 Anacapa pelican eggs  

 
 
This example will demonstrate some classical inference techniques based on the data above.   
The objective is to investigate the relationship between shell thickness and PCB concentration.  
We are assuming that shell thickness (the response variable) can be predicted from PCB 
concentration (explanatory constants) using a normal linear regression model.  Classical 
inference techniques will be used to estimate the parameters of this model (the slope of the 
regression line β, the intersect α and the underlying variance σ2), investigate the sampling 
distribution of β, and test the hypothesis that shell thickness and PCB concentration are not in 
fact related (ie β = 0). 

Assuming a normal linear regression model, the random variables Yi for each fixed xi are given 
by 

iii WxY ++= βα    , 
 
where;  Y = response variable (shell thickness) 
 x   = explanatory constants (PCB concentration)  
 β = the slope of the regression line  

α = the intersect of the regression line 
W = normal random error term with mean 0 and variance  σ2. 
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This relationship may be equivalently expressed as 
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where α, β and σ are the same for each i. 

There are several different ways to estimate the parameters of the this model.  The maximum 
likelihood method can be used for all three parameters, least squares estimation can be used for 
α and β (giving the same result as the maximum likelihood method), whilst the method of 
moments can be used for σ.  To obtain maximum likelihood estimates of α and β requires 
partially differentiating the likelihood function 
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or its logarithm (which is easier), with respect to α and β, equating the expressions to zero, and 
then solving them.  The resulting estimates are 

.ˆ

ˆ

11

11

2

111

n

xy

xxn

yxyxn

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

∑∑

∑∑

∑∑∑

=

∧

=

==

===

−
=











−































−











=

β
α

β

 

 
By introducing the notation 

2

11

2

1

2 1)( 









−=−= ∑∑∑

===

n

i
i

n

i
i

n

i
ixx x

n
xxxS   , 

 
and 

∑ ∑ ∑∑
= = ==





















−=−−=

n

i

n

i

n

i
i

n

i
iiiiixy yx

n
yxyyxxS

1 1 11

1))((   , 

 
these estimates can be equivalently expressed as 
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and 

xˆyˆ β−=α . 
 
By writing 
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it can be seen that the estimator18 B̂ is a linear combination of n independent normal random 
variables Yi.  It follows that B̂  has a normal distribution with expected value 
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The quantity 
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is therefore a standard normal random variate.  Under the assumptions of the normal linear 
regression model it can also be shown that   

2
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is a value of a chi-squared random variable with two degrees of freedom.  This random variable 
is independent of B̂  allowing substitution into the definition of student’s t distribution such that 
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is a value of a random variable having the t distribution with n-2 degrees of freedom.  Replacing 

2σ̂  with its method of moments estimate 

                                                      
18 The term estimate is used to denote a number obtained from data.  An estimator refers to a random 
variable expressing an estimating formula. 
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provides an important result for the sampling distribution of β without the nuisance parameter σ 
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This distribution can now be used to derive confidence intervals for the slope parameter β, and 
to test the null hypothesis that the response variable and explanatory constants are not in fact 
related, ie that β = 0. 

Using the data illustrated in Figure B1, the maximum likelihood estimates of the slope and 
intersect parameters are 00028.0ˆ −=β  and 3749.0ˆ =α , such that the normal linear regression 
model is 

iii Wx00028.03749.0Y +−=   . 
 

Having derived the sampling distribution of β the analyst is able to test the null hypothesis that 
shell thickness and PCB concentration are not in fact related, ie β = 0.  The standard error of the 
estimate given by equation B1 is 
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Under the null hypothesis β = 0 the value of the test statistic is calculated from equation B2 

08.2
75.340341/0785.0

0)00028.0(t −=−−=  

 
Comparing the value of the test statistic against student’s t distribution with 63 degrees of 
freedom yields a total significance probability19 of 0.042.  This result suggests that at the 95% 
significance level there is sufficient evidence to reject the null hypothesis.  The results of the 
test, however, are not very compelling – the value of the significance probability is only just 
significant, suggesting that the evidence portrayed in Figure B1 is not conclusive.  Indeed re-
running the analysis but omitting the data point in the bottom right corner of Figure B1, resulted 
in slope and intersect estimates of 000184.0ˆ −=β  and 357.0ˆ =α , such that the normal linear 
regression model is 

iii Wx000184.0357.0Y +−=   . 
 

                                                      
19 If the statistical experiment were to be repeated numerous times, and if the null hypothesis were true, 
the Significance Probability (SP) represents the proportion of future experiments that would offer less 
support for the null hypothesis than the experiment that was in fact performed. 
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Under the same null hypothesis, however, the value of the test statistic becomes –1.256, which 
yields a total significance probability of 0.214.  Thus by omitting one data point from the 
analysis there is no longer sufficient evidence to reject the null hypothesis. 
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APPENDIX C BALLAST SAMPLING PROBLEM  

 
Table C1 Conditional probabilities for ballast sampling problem 

Ballast tank status Sample result = Positive (Pos) Sample result = Negative(Neg) 

Infected (I) P(Pos/I) = 0.70 P(Neg/I) = 0.30 

Uninfected (U) P(Pos/U) = 0.05 P(Neg/U) = 0.95 
 
 
 
 
Table C2 Calculating the posterior probability of ballast tank infection (one sample) 

Alternative Prior Pr(Neg/alt) Joint  Posterior 

Tank infected (I) 0.5 0.30 0.150 0.240 

Tank not infected (U) 0.5 0.95 0.475 0.760 

   Σ 0.625 Σ 1.00 
 
 
 

 
Table C3 The effect of collecting more samples on the posterior probability 

Alternative Prior Pr(Neg/alt) Joint  Posterior 

Tank infected (I) 0.240 0.30 0.072 0.091 

Tank not infected (U) 0.760 0.95 0.722 0.909 

   Σ 0.794 Σ 1.00 

     

Tank infected (I) 0.091 0.30 0.027 0.031 

Tank not infected (U) 0.909 0.95 0.864 0.969 

   Σ 0.891 Σ 1.00 

     

Tank infected (I) 0.031 0.30 0.009 0.010 

Tank not infected (U) 0.969 0.95 0.921 0.990 

   Σ 0.930 Σ 1.00 
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APPENDIX D JOURNEY SURVIVAL PROBLEM 

The length of time (T) that a population is expected to survive in the ballast tank can be viewed 
as a random variable.  For a some species, the number of individuals that survive to time t has 
been observed to decline exponentially as t increases, such that 
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where 1/µ = λ = the death rate of the population.  Let p(t) represent the probability distribution 
function of the random variable T, such that 
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Differentiating with respect to t (using Part 1 of the fundamental theorem of calculus) yields 
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C is a normalising constant which ensures that the second axiom of probability is satisfied such 
that 
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According to this model the random variable T is said to follow an exponential distribution with 
expected value µ such that the probability of observing a survival time t given by 
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If individuals are still alive at the end of the vessel’s journey, the appropriate probability is 
provided by the right tail of the exponential distribution; the probability that the survival time is 
at least some value x 
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For n independent observations of extinction time in the ballast tank, t = (t1, t2, .....tn), and m 
independent observations of journeys which the species survived, x = (x1, x2, .... xm), the 
likelihood function for µ is given by 
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Journey survival model #1 

Assuming a uniform prior distribution for µ, p0(µ) = k, on the support ∞≤≤ µ0  and applying 
Bayes theorem, we obtain 
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where F = (Σti + Σxj), and k has been subsumed into the normalising constant c which is given 
by 
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The integral is evaluated by making the change of variable F/µ = z as follows 
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Using the Euler definition of the gamma function 
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The posterior probability distribution of µ given the data vectors t and x is therefore given by  
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where F = (Σti + Σxj), t ≥ 0, x ≥ 0 and n is a positive integer. 

Journey survival model #2 

Assuming a uniform prior distribution for µ, p0(µ) = k, on the support M≤≤ µ0 and applying 
Bayes theorem we obtain 
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where F = (Σti + Σxj), and k has been subsumed into the normalising constant c which is given 
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This integral has no closed form solution and must be evaluated numerically.  For the 
distribution illustrated in Figure 3.3 this was achieved using Simpson’s Rule with 300 unit 
increments. 
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Journey survival model #3 

Assuming a non-informative prior distribution for µ, p0(µ) ∝ 1/µ, on the support ∞<< µ0  and 
applying Bayes theorem, we obtain 
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where F = (Σti + Σxj), and c is the normalising constant such that 

µ
µµ

dFc
n

∫
∞ +









−








=

0

1

exp11    . 

 
The integral is evaluated by making the change of variable F/µ = z as follows 
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Using the Euler definition of the gamma function 
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The posterior probability distribution of µ given the data vectors t and x is therefore given by  
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where F = (Σti + Σxj), t ≥ 0, x ≥ 0 and n is a positive integer. 
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Journey survival model #4 

Assuming a non-informative prior distribution for µ, p0(µ) ∝ 1/µ, on the support M<< µ0  and 
applying Bayes theorem, we obtain 
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where F = (Σti + Σxj), and c is the normalising constant such that 
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This integral has no closed form solution and must be evaluated numerically.  For the 
distribution illustrated in Figure 3.5 this was achieved using Simpson’s Rule with 300 unit 
increments. 
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APPENDIX E1 BINOMIAL MODEL 

Variate Y is a binomial random variable (the number of success in n Bernoulli 
trials), θθθθ is the probability of success at each trial. 

 
Likelihood function 
l(θ/y) 
 

 
Binomial model: 
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Posterior probability 
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Beta distribution: 
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The normalising constant is therefore given by 
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and its relation to the Gamma function 
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the posterior distribution becomes 
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Derivation of 
uninformative prior 
distribution 

L = ln l(θ/y) = constant + ylnθ + (n-y)ln(1-θ) such that 
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Since E(Y) = nθ it follows that 
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where J(θ) is Fisher’s information measure.  Using Jeffrey’s rule 
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APPENDIX E2 POISSON MODEL 

Variate Y is a Poisson random variable (the number of events within a specified 
time interval t), λλλλ is the average rate of these events 

 
Likelihood function 
l(θ/y) 
 

 
Poisson model:  
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Derivation of posterior 
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Suppose y = (y1...yn) is a set of n independent frequencies each distributed as 
a Poisson distribution with mean λ.  Then given y, the likelihood is 
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Using Bayes theorem 
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it follows that 
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The normalising constant is therefore given by 
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Derivation of 
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distribution 
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where J(λ) is Fisher’s information measure.  Using Jeffrey’s rule 
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APPENDIX E3 EXPONENTIAL MODEL 

Variate Y is a exponential random variable (the waiting time between 
consecutive events occurring in a Poisson process) µµµµ is the mean waiting 
time between events. 

 
Likelihood function 
l(θ/y) 
 

 
Exponential model: 
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Inverted gamma distribution: 
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Derivation of posterior 
distribution 
 

 

Suppose y = (y1....yn) is a set of independent and identically distributed 
observations on the waiting time T between consecutive events in a Poisson 
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Using Bayes theorem 
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The normalising constant is given by 
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which is an Inverted gamma ),( βα ++ ynn distribution. 
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Since E(Y) = µ it follows that 
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where J(µ) is Fisher’s information measure.  Using Jeffrey’s rule 
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APPENDIX E4 NORMAL MODEL (σσσσ2 KNOWN, µµµµ UNKNOWN) 

Variate Y is a normally distributed random variable whose mean µµµµ is unknown 
but whose variance σσσσ2 is known 

 
Likelihood function 
l(θ/y) 
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Derivation of posterior 
distribution 
 

 

Suppose y = (y1...yn) is a set of n independent observations of a normal 
random variate Y with unknown mean µ, but known variance σ2.  Then 
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Given the data y, the variance σ and the parameters of the prior distribution, 
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Derivation of 
uninformative prior 
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APPENDIX E5 NORMAL MODEL (µµµµ KNOWN, σσσσ2 UNKNOWN) 

Variate Y is a normally distributed random variable whose mean µµµµ  is known 
but whose variance σσσσ2 is unknown 
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Derivation of posterior 
distribution 
 

 

Suppose y = (y1...yn) is a set of n independent observations of a normal 
random variable Y with known mean µ, but unknown variance σ2, then 
given y the likelihood function is 
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Derivation of 
uninformative prior 
distribution 

Given a set of n independent observations of a normal random variate Y 
with unknown variance σ2 then 
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Since E(s2) = σ2  for large n, it follows (approximately) that 
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APPENDIX E6 NORMAL MODEL (BOTH µµµµ AND σσσσ2 UNKNOWN) 

Variate Y is a normally distributed random variable whose mean µµµµ  is unknown 
and whose variance σσσσ2 is unknown 

 
Likelihood function 
l(θ, σ/y) 
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Derivation of posterior 
distribution (with non-
informative prior) 
 
 

Suppose y = (y1... yn) is a set of n independent observations of a normal 
random variate Y with unknown mean µ and unknown variance σ2.  Then 
given y the likelihood is 
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Assuming non-informative prior for µ and σ (and that their prior 
distributions are independent) the posterior distribution becomes 
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To evaluate the remaining integral make the change of variable a s= υ 2 2/  
such that 
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Using the following gamma integral identity 
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the integral becomes 
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such that 
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The posterior distribution function is therefore given by 
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APPENDIX F JOURNEY SURVIVAL SIMULATION 

The journey survival model introduced in section 3.1 is  
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
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
−=

µ
tPPt exp0   , 

 
where Pt is the ballast tank population after t days, P0 is the initial inoculum and µ is the species 
life expectancy.  The objective is to introduce the uncertainty regarding the parameter µ into the 
model output.  The uncertainty regarding this parameter is described by the posterior 
distribution function 
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which has the kernal of an inverted gamma distribution. 

The simulation proceeds in the following manner: 

1. generate a random variate φ from a Gamma distribution with shape parameter b and scale 
parameter c; 

2. the variate µ = 1/φ is an inverted gamma variate; 

3. if µ is greater than M (eg 100) discard it and return to step 1, otherwise substitute µ into the 
journey survival model; 

4. calculate Pt given the inoculum P0 and the journey duration t; 

5. repeats steps 1 to 4 one thousand times and collate the resultant vector Pt1....Pt1000 in a size 
frequency distribution. 

Gamma variates (γ: b, c) for the case where c is an integer can be computed from 
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where Ri are independent unit rectangular variates (Evans et al, 1993).  Independent unit 
rectangular variates can be easily generated in MicroSoft Excel using the RND( ) function. 

Random inverted gamma variates can be generated by using the change of variable µ = 1/φ.  
The proof is as follows:  Suppose µ has an inverted gamma distribution with shape parameter b 
and scale parameter c such that 
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where k is a normalising constant.   
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Make the change of variable φ = 1/µ such that  
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thereby establishing that φ has a gamma distribution with shape parameter b and scale parameter 
c, as required. 
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APPENDIX G  INTEGRATING OUT NUISANCE PARAMETERS 

Consider inferences regarding a normal random variate Y in which both µ and σ are unknown.  
Interest commonly centres on µ (=θ1) whilst σ (=θ2) is simply a nuisance parameter.  The joint 
posterior distribution function p(θ, σ / y) assuming non-informative priors for θ and σ is given 
by (Appendix E6) 
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Integrating over σ yields the marginal posterior distribution function for µ  
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The integral is evaluated by making the change of variable z = A/2σ2 where 
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where υ = (n-1).   

 

By making the change of variable  
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this is recognisable as the kernel of students t distribution with υ degrees of freedom 
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It is interesting to note that the distribution of this quantity t is identical to that derived by 
classical sampling theory.  Both the Bayesian posterior distribution for t and its classical 
counterpart are independent of the nuisance parameter σ.  It is important to note, however, that 
in the Bayesian approach σ is eliminated through integration, which can be used for any set of 
nuisance parameters20.  In classical sampling theory independence occurs purely through good 
fortune; in general terms quantities which are functions of the data and the parameters of 
interest, but whose sampling distributions do not involve nuisance parameters, do not usually 
exist ((Box and Tiao, 1973). 

                                                      
20 Box and Tiao (1973) provide a word of caution in this respects: if p(θ1/θ2, y) is very sensitive to 
changes in θ2 it is important to carefully examine the marginal posterior distribution p(θ2/y) prior to 
eliminating θ2 to make inferences about θ1. 


