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MONITORING OF GREAT BARRIER REEF WATERS; SOME OCEANOGRAPHIC REQUIREMENTS

D.J. ROCHFORD

CSIRO Marine Laboratories Report No. 184

Abstract

Surface and subsurface sea temperatures and salinities have been recorded by
CSIRO and AIMS in the Great Barrier Reef and western Coral Sea since 1974.
The time series have highlighted several oceanographic features of importance
in the planning of any long-term monitoring of the physical and chemical
characteristics of these waters.

Some evidence that supports the identification of two Zones in GBR waters
off Townsville is presented. The inner zone experiences some maximal effects

of land and local inputs, while the ocuter zone experiences signficant exchange
with the adjoining Coral Sea.

Along the outer margin of the GBR, deeper slope waters welled to the
surface in the Palm Passage in November 1980. Previous upwellings, if any,
might not have been detected.

In June 1980 Coral Sea surface waters penetrated well into the Palm
Passage. Earlier studies of the mid-winter dynamics of the Coral Sea off the
GBR had shown, in several years, a general westward drift into the GBR region
at around 19°S. This influx of surface Coral Sea waters inte the GER may
possibly, therefore, be a persistent feature. In 1981, however, no such
influx occurred off Townsville and no data were available elsewhere along the
GBR to determine if the influx occurred at another locality.

Strategies for lontherm monitoring within these two zZones are suggested.
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INTRODUCTION

The lack of a systematic time-series of oceancographic observations of the
Great Barrier Reef ({GBR) was drawn attention to by Pickard (1977} in his
summary of the knowledge of temporal and spatial changes within the region.
Pickard was obliged to use Orr's 1928-29 Low Island measurements as his major
source, Pickard also pointed out the lack of information on "interaction
between the waters of the lagoon and those of the Coral Sea outside”.

To rectify this situation, CSIRO set up a series of monitoring stations
within the region in the mid-1970's. Up until 1983, these stations regularly
monitored temperatures, salinities and some nutrients. After 1983, several
stations were discontinued.

Whilst these GBR monitoring stations were operating, the CSIRO ships of
opportunity program (SOOP) was measuring sea-surface temperatures (SST) and
salinity along a shipping route some 300 km to the east of the GER,
Unfortunately this program was discontinued in 1982.

During 1975 and 1978 the Australian Institute of Marine Sciences (AIMS})
repeatedly measured oceanographic characteristics of GBR waters at three near
shore stations off Townsville. During 1980 and 1981 AIMS also ran a series of
oceanographic cruises that covered a much wider area of the GBR, from off
Townsville to its outer margin, than had earlier cruises.

These data collected by CSIRO and AIMS, which were not available to
Pickard, make possible a closer examination of the seasonal changes in the
waters of the GBR, and western Coral Sea, of oceanographical zonation across
the GBR, and of mechanisms for exchange between waters of the GBR and western
Coral Sea.

At a meeting on future research needs in the GBR (Baker, et al. 1983}, a
long-term monitoring program of these GBR waters was considered highly
desirable. Results in this paper, however, suggest that more exploratory data
may be needed before the sites for such a monitoring program can be selected.



DATA SOURCES AND STATISTICS

SST and salinity data collected by the (SIRO SOOP (See Piip 1974 for details)
in the western Coral Sea and data on temperatures and salinities at surface-
subsurface depths from the monitoring stations in the GBR, are available on
request from the CSIRO Division of Oceanography, Marine Laboratorles, Hobart,
Tasmania.

The locations of the CSIRO GBR sampling sites and of selected 1° square
Coral Sea comparison sites are shown.in Pig. 1. The areas covered by the AIMS
cruises in 1976-77 and in 1980-81 are indicated on the inset to Fig. 1.

The AIMS temperature and salinity values are published in Ikeda et al.,
1980 and Bellamy et al., 1982. Monthly means of SST and salinity, the number
of observations per month, and the standard deviations about the mean for the
CSIR0C and AIMS monitoring datda are given in Tables 1 and 2.

Similar statistical information for the 1° square monitoring sites in the
western Coral Sea is listed in Table 3.

RESULTS

1. Changes with time at fixed sites in the GBR and western Coral Sea

(a} Sea-surface temperatures

The maximum summer SSTs at the three northernmost GBR and (bral Sea
sites (Fig. 1) were not significantly different {(Figs 2, 3 and 4;
Table 1) from those in the western Coral Sea (Table 3). However, for
most of the rest of the year the western Coral Sea SSTs were
consistently warmer. This was especially so in winter when the Coral
Sea SSTs in the north were some 1°C warmer (Fig. 2) and in the south
some 2.7°C warmer (Fig. 4).

At the southernmost comparison site (Fig. 1), by contrast, Coral
Sea S55Ts were 1° to 1,5°C warmer than those of GBR waters for most of
the year, including summer (Fig. 5). The magnitude of the standard
deviations in the SSTs at both the GBR and the comparison 1° sguare
Coral Sea positions (Tables 1 and 3) suggests, however, that such
differences in SST could be smaller or larger in some years.
Interannual changes in the mean annual SST of this western Coral Sea
region, which can be as much as 2°C over a ten-year period (Rochford,
in preparation), would contribute to this variability.

Until sufficient long-term data are available for GBR waters to
provide better statistical information, the differences in mean SSTs
exhibited in Figs 2 and 5 may have only limited significance.



(b) Surface salinity

Within the GBR, mean surface salinities oscillate from a marked
minimum during the mcnsoon rain season (December to March) to a
maximum in spring/early summer (July to December) when evaporation
losses are in excess of rainfall (Pickard, 1977). Mean surface
salinities in the western Coral Sea follow the same annual timetable

(Figs 2 to 5), although the mean annual oscillations are - much
smaller. '

At the three northern sites (Figs 2 and 4) the annual minimum
salinities occur within the GBR, but south of 19°S (Fig. 5} the
annual minimum salinities are found in the western Coral Sea. This
latitudinal difference is the result of the East Australian Current
transporting less saline waters southward in summer into the western
Coral Sea off the southern region of the GBR. The monsocnal rains
are also much less intense in this southern section of the GBR
{(Pickard, 1977).

The magnitude of the standard deviation around the mean monthly
salinities (Tables 1 to 3) indicates, as for the 5STs, quite large
interannual differences both within the GBR and the adjoining western
Coral Sea. However, it is unlikely that the latitudinal differences
between the GBR and western Coral Sea salinities would be reversed
in any year.

thanges with time along transects from the outer to the inner GBR off
Townsville

AIMS oceanographic cruises in the vicinity of Townsville collected
sufficient data to examine the seasonal changes during 1980-81 along Palm
Passage transect (Fig, 1 inset) and the changes over six months of 1981
along a Magnetic Passage transect (Fig. 1 inset).

(a) Palm Passage transect

The maximum SSTs occurred in March, with little variation in value
along the length of the transect (Fig. 6). The minimum $3Ts occurred
in August at the inner end of the transect and in September at the
outer end. The inner SSTs were some 2°C colder than those at the
outer end during this minimum period. A minimum SST at Station 13 in
November 1980 (Fig. 6) is attributed to upwelling (Section 4(b)).

Surface salinites changed seasonally in a much more irregular
manner than did SSTs. From a minimum during the monsoon seascn in
January, surface salinities increased at a uniform rate along the
length of the transect until March (Fig. 7). In April-May, however,
salinities increased from the centre of the transect in April to
terminate in May at the inner end of the transect.

A low-salinity event that appeared at the outer end of the



transect in June reduced surface salinities considerably along the
length of the transect in mid-winter (Fig. 7). (See Section 4(a).)
From August through to November, surface salinities increased during
the high evaporative season (Pickard, 1977). The lower surface
salinity at Station 13 in November 1980 is attributed as is the SST
minimum, to upwelling (Section 4(b)).

(b) Magnetic Passage transect

During 1975-78 AIMS occupled three monitoring stations off Townsville
(Fig. 1 inset). Monthly means of these data were combined with the
six months of sampling in Magnetic Passage during 1981 to show the
seasonal changes from very close inshore to the outer margin of the
GBR, along a Magnetic Passage transect {(Fig. 1 inset).

Seasonal changes in SSTs (Fig. 8) along the Magnetic Passage
transect followed much the same pattern as those along the Palm
Passage transect (Fig. 6}, with maximum temperatures predominantly in
March and minimum temperatures in July, one month earlier than along
the Palm Passage transect. In July there was a gradient of some 4°C
between inshore and offshore ends of the Magnetic Passage transect.
The demarcation between the colder inshore waters and the warmer
offshore waters occurred principally around Station 42 (Fig. 1), some
80 km from the coast along the Magnetic Passage transect (Fig. 8}.
Along the Palm Passage transect, a similar demarcation was found
around Station 12 (Fig. 1}, also at about 80 km from the coast
(Fig., 6). (See Section 3.)

Seascnal changes in surface salinities were much more pronounced
near the coast along the Magnetic Passage transect than offshore
(Fig. 9). As for SSTs, the demarcation between the near-shore, highly
variable, salinity pattern and the more stable salinity pattern
offshore occurred around Station 42.

The salinities offshore of this demarcation increased uniformly
across the transect until at least June 1981 (Fig. 9), with no
evidence of the low salinity event in May-June encountered offshore
along the Palm Passage transect (Fig. 7) some 16 km away in the
previcus year. Possibly, therefore, this 1980 mid-winter low-
salinity event is not a persistent feature of the seascnal salinity
pattern of the Townsville region of the GBR. (See also Section
4(a))

Annual ranges of SST and salinity in the waters of the GBR and western
Coral Sea

Along a composite transect of the Palm Island passage and the much
earlier Townsville nearshore station data (Fig. 1 inset)}, the annual SST
range varied from high values nearshore to near-constant, much lower,
values at between 80 km to 400 km offshore (Fig. 10). Off Townsville,
therefore, GBR waters are separable (in terms of their annual SST range)



at around 80 km offshore into an inner zone with an annual range greater
than 5°C and an outer zone with an annual range of between 4°C and 5°C,
which is similar to the annual range of 8S8Ts in the adjoining Coral Sea.

At around 80 km offshore, the water along this composite transect
deepens more rapidly with distance offshore (Fig. 10). The mean annual
surface salinity range also separates, at around 80 km offshore, into an
inner zone of high values and an cffshore zone of much lower and near-
constant values, much as did the SST range (Fig. 10). Apparently, then,
there is a boundary about B0 km offshore between onshore GBR waters,
which are largely influenced by local processes of heating, cooling,
dilution and evaporation, and offshore waters which additionally exchange
more freely with the waters of the western Coral Sea,

As the annual ranges of SST and salinity at the Low Island, Lizard
Island and Heron Island CSIRO monitoring sites agree reasonably well with
the ranges off Townsville at equivalent distances offshore (Fig. 10), it
is possible that separation into onshore and offshore zones is a general
feature of the GBR as a whole. However, more information will be
required to substantiate this and to establish the oceancgraphic and
meteorological significance of the two zones.

The annual SST ranges Pickard (1977) derived from the nearshore
regions of the GBR are, for the most part, greater than 5°C. These
ranges fit, therefore, into the proposed onshore zone (Fig. 10).

Influx of western (bral Sea waters into the Great Barrier Reef off
Townsville

(a) Surface influx

In June 1980 there was a sudden, shortlived influx of low-salinity
waters into the outer margin of the Palm Passage transect

(Section 2(a)). Seasonal changes in surface salinity show (Fig. 11)
that this sudden decrease in surface salinity also occurred to a
lesser extent at the southernmost outer margin of the AIMS survey
area in June 1980 but, more significantly, showed up in the SOP mean-
surface-salinity pattern in June within the square 19°-19°59'S and
1562°-152°59'E some 400 km offshore. As salinities for 1980 were not
available for this square, the mean value was used. Within the AIMS
June 1980 survey area, the low-salinity tongue extended inshore to at
least 80 km from the coast, with the core south of the Palm Passage
transect (Fig. 12). A chart of the June surface salinity
distribution in the western ral Sea and GBR shows (Fig. 13) that
the tongue of low-salinity waters may have originated south of Papua
New Guinea, and broadened and spread onshore arcund the latitude of
Townsville.

At Willis Island during May and June 1980, a low-salinity event
was observed in early June (Fig. 13 inset), preceding the low-
salinity influx into the GBR later in June. Scully Power (1973)
(using data from 1968-1971) showed from the dynamic height anomalies



of the surface relative to 1500 m that, north of arcund 19°S (the
latitude of the Townsville region), most of the mid-winter flow was
directed westward onto the GBR and to the north along the margin of
the GBR. This suggests that the 1980 influx in June may not be an
isolated event but a persistent feature of the mid-winter dynamics.
However, the non-occurrence of this low-salinity influx into the GBR
off Townsville in June 1981 (or any other month) (Section 2) suggests
either that this westward drift of Coral Sea waters does not reach
the GBR each year or that oral Sea waters reach the GBR at different
locations along the GBR, depending upon interannual changes in wind
patterns or for other reasons,

(b) Subsurface inflow

Periodic uplift of colder and relatively rich slope waters to within
50-100 m of the surface of the outer GBR off Townsville has been
documented by Andrews and Gantien (1982) and by Andrews (1983(a),
1983(b}). KXelvin waves of much shorter period also cause uplift of
these slope waters off the same region of the GBR (Wolanski and
Pickard 1983). These studies have not shown that these uplifts carry
deeper waters to the surface in the true upwelling pattern found off
the northern NSW coast in the spring and early summer {(Rochford 1972,
1975).

‘However, there was one instance in late spring (November 1980)
when these uplifted waters did upwell to the surface within Palm
Passage (Fig. 6 Station 13). Congidering the sampling interval along
this passage, it is possible that similar upwellings could have
occurred earlier in spring, but not have been detected.

The sequence of events leading to the November 1980 upwelling is
shown in Figs 14 to 16. Along the ocuter margin of the Palm Island
Passage, between August and November 1980, surface salinities
increased in paraliel with the salinities of a subsurface salinity
maximum (Subtropical Lower Water) (Fig. 14). The increase in
salinity of these subsurface waters is the result of uplift of waters
from within the offshore subsurface salinity maximum at around 150 m
into the shelf region of the Passage (Figs 15 and 16). By November
1980 these colder, high-salinity waters had upwelled to the surface
around Station 13 (Fig. 16}.

Unfortunately, no appropriate data from other years or
localities along the GBR are available to establish whether this
uplift and upwelling is widespread.

These periodic uplifts of high-salinity, subtropical Lower Layer
waters could also have-a stabilising effect on the salinity balance
of the outer GBR towards the end of each year. This would explain
the low standard deviations of the maximum mean salinities at the
CSIRO sites (Table 1) despite the larger standard deviations of the
salinities during the monsoon rain season.



LONG-TERM MONITORING OF GBR WATERS

The results of this study highlight the large degree of inhomogeneity in SST
and salinity across and along the length of the GBR. Such inhomogeneities
create problems in selecting not only representative monitoring sites but also
the number of such sites. However, the results do suggest the oceanographic
requirements that need researching before instituting any long-term fixed
monitoring program,

The first requirement is for a more extended study of the possibility
that the GBR can be divided, oceanographically, inte an inner and an outer
zone (Sections 2 and 3).

The second requirement is for oceanocgraphic surveys or deployment of
oceanographic instrumentation aleong the major passages into the GBR,
particularly in the winter and spring months, to establish the extent of
direct surface influx and subsurface uplift and/or upwelllng of deeper western
Coral Sea waters into the GBR (Section 4).

If the two zones across the GBR are a general -feature of the GBR, and if
the influx of Coral Sea waters into the GBR occurs as a result of a
combination of direct and subsurface movements, the two zones require
different monitoring strategies.

Monitoring of the outer zone could initially be carried out from ships of
opportunity (SOOP), including coastal steamers, fishing and tourist boats, as
well as the larger maritime fleet. Surface temperatures could be measured
manually but preferably by thermographs; salinities would have to be
determined by salinometers from samples collected at the same time as the
temperature is noted.

As often as possible oceanographic sampling along the length of the major
passages connecting the GBR and the western Coral Sea should be carried out to
supplement the surface sampling. TIf the pattern of influx was consistent
along the length of the GBR and was clearly manifest in the surface SOOP
values, it might be possible in time to reduce the number of such passages
sampled.

Monitoring of the inner zone, in which the influence of local processes
and of any man-made inputs predominate, would need a different and more
difficult strategy to implement. It would have to be concentrated on sites
and regions of major input of either existing or potential pollutants.
Depending upon the flood cycles and how the intensity of local agricultural
and industrial practices varies during the yeay, it would probably be
necessary to compare several inner-zone sampling sites over a number of years
before choosing representative sites. Sampling would also have to include a
wide range of properties, including pollutants, rather than relying on the
oceanographic properties applicable to the offshore zone,

In parallel with the monitoring of offshore GBR waters, monitoring of the
western Coral Sea should be continued by ships of opportunity out of
Queensland ports and by any other means,



Tables 1 - 3

Figures 1 - 16
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Details of these stations are given in Ikeda et al., 1980 and
Bellamy et al.
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