

**CSIRO
Marine Laboratories**

REPORT 157

**A Bibliography
of Physical Oceanography
in Southwest Australian Waters**

Alan Pearce

1983

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION
MARINE LABORATORIES
P.O. BOX 21, CRONULLA, NSW 2230, AUSTRALIA

National Library of Australia Cataloguing-in-Publication Entry

Pearce, Alan, 1940-

A bibliography of physical oceanography in
southwest Australian waters.

Includes index.

ISBN 0 643 03469 2.

1. Oceanography—Indian Ocean—Bibliography.
I. Commonwealth Scientific and Industrial
Research Organization (Australia). Marine
Laboratories. II. Title. (Series: Report
(Commonwealth Scientific and Industrial Research
Organization (Australia). Marine Laboratories);
157).

016.55146'755

© CSIRO 1983. Printed by CSIRO Melbourne

A BIBLIOGRAPHY OF PHYSICAL OCEANOGRAPHY IN SOUTHWEST AUSTRALIAN WATERS

Alan Pearce

Division of Oceanography
CSIRO Marine Laboratories
P.O. Box 20, North Beach, WA 6020

CSIRO Marine Laboratories Report 157 (1983)

Abstract

This bibliography lists 317 references on physical oceanography for the area Northwest Cape ($21^{\circ}47'S$) to Cape Leeuwin ($34^{\circ}22'S$), from the surf zone to the deep ocean. The period covered is 1930 to the present. Topics included in the listing are circulation, temperature, salinity, waves, tides, sea level, and meteorology.

Introduction

Prior to the 1970's, physical oceanographic work off Western Australia was devoted largely to the circulation and water masses of the southeast Indian Ocean, with little effort being spent on coastal waters. In the last decade, however, increasing interest has been shown in the continental shelf region, and this bibliography has been compiled as a record of such work as well as providing a basis for further research.

The scope of the bibliography is primarily the physical oceanography of the west coast between Northwest Cape ($21^{\circ}47'S$) and Cape Leeuwin ($34^{\circ}22'S$), as the northwest and southern coasts seem to have distinctly different water regimes. Emphasis is on the continental shelf circulation and hydrology, although some relevant papers relating to the surf zone/estuarine area and deep-sea oceanography (mainly CSIRO work) are included. Similarly, selected topics such as meteorology,

climatology and geology have been included as these clearly have an important bearing on the shelf oceanography, and some biological papers are used when they deal with the oceanography in any detail. Choice of material is obviously subjective, but it is hoped that all the important papers have been found.

Historical papers, defined as those published before 1930 (an arbitrary cut-off point) are not dealt with here as they will be covered in a separate historical survey.

A noteworthy feature of this bibliography is the large number of consultant unpublished reports which appear: the author is grateful to the consultants and to the sponsors for permission to list these reports, but as they are confidential the sponsors must be approached for copies or for data.

Format

The papers which are judged to be of primary importance for physical

oceanography are grouped in Part I of the bibliography - these relate to currents, hydrology (temperature and salinity), waves, sealevel (including tides), etc.

Other works are in Part II, which comprises meteorology and climate (wind, rain, radiation, air temperature, etc.) and geological/biological papers with secondary but relevant oceanographic interest.

In each Part, the references are in chronological order, then by (first)

author alphabetical in each year. Most references include a very brief summary of the contents relevant to physical oceanography. An index is appended, listing by author (and year) the main content of each paper in terms of standard keywords to facilitate cross-referencing.

The author is endeavouring to build up a collection of all reprints on the physical oceanography of Western Australian waters, and will appreciate receiving copies of new papers as well as those missed from this bibliography.

Acknowledgements

The author gratefully acknowledges the following individuals and institutions for their assistance in obtaining references, and/or for permission to include confidential reports here.

Dr Graham Chittleborough, and the Librarian of the Western Australian Department of Conservation and Environment. Dr. Mike Paul, and the Librarian of the Public Works Department of Western Australia. Dr Ray Steedman and Mr Stan Stroud of R.K. Steedman & Associates. Librarian at the Australian Museum library. Librarian at the State Library of Australia. Librarian at the Bureau of Meteorology (Perth) library. Librarian at the Commonwealth Department of Housing & Transport library. Mrs Joan Brown and the librarians at CSIRO Marine Laboratories library, Cronulla. Dr Ernest Hodgkin, Western Australian Department of Conservation & Environment. Dr John Penrose, Western Australian Institute of Technology. Wanneroo Shire Council (Mr N. Bennetts). Dr J. Gentilli, Dr Brian Logan, University of Western Australia. Dr Loisette Marsh, Western Australian Museum. Dr Geoff Lennon, Flinders University of South Australia. Commonwealth Department of Housing & Transport (Mr J. Buchanan). Fremantle Port Authority (Capt. B. Noble). Metropolitan Water Supply, Sewerage & Drainage Board (Perth) (Mr D. Harvey and Mr B. Sanders). Water Research Laboratory, University of New South Wales (Prof. D. Foster). Public Works Department of Western Australia (Mr J. Abbott). La Porte Australia Ltd (Mr J. Abbott, PWD). Esso Australia Ltd (Mr S. Koroknay). Dampier Salt Ltd (Mr J. McArthur). Maunsell & Partners Pty Ltd (Mr G. Firney). Western Australian State Energy Commission (Mr Crawford). Binnie International (Australia) Pty Ltd (Mr Brian Cox). Dames & Moore (Mr J. Trudinger). T.D. Meagher & Associates (Dr T. Meagher). Environmental Resources of Australia (Dr T. Meagher). West Australian Petroleum (Mr J. Wright). E.G. & G. International (Mr K. Taylor). Taylor & Burrell (Mr R. Taylor). Geraldton Port Authority (Mr L. Graham).

I am also grateful to Miss Jill Thomas for so competently handling an unpleasant typing assignment.

Index and Keywords

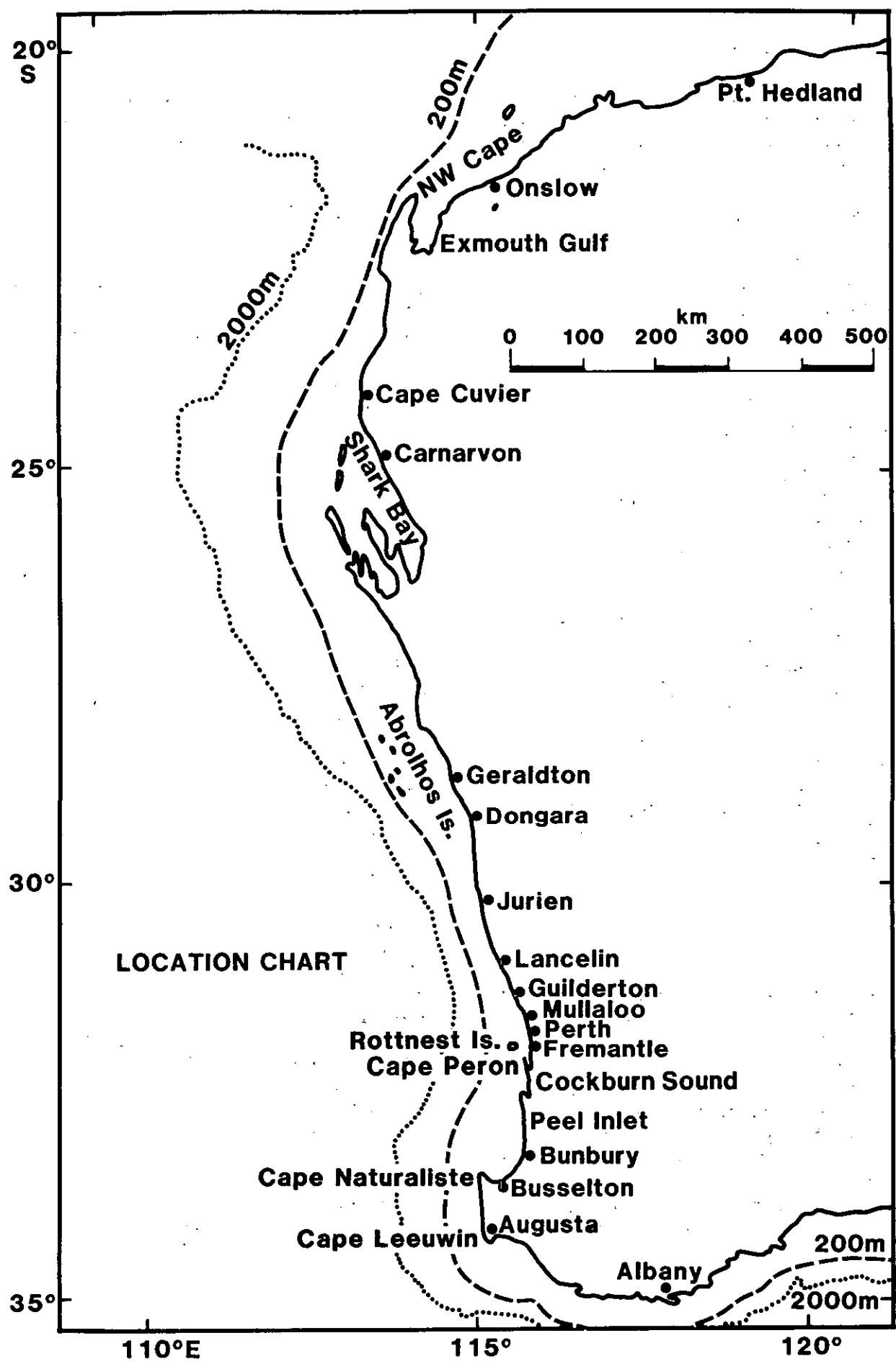
This tabulation acts both as an author list and subject/locality index. References are arranged here by senior author and year, and the contents are summarised by keywords which have been assigned (somewhat subjectively perhaps) to each paper. The keywords are:

Subject keywords.

AIR TEMPERATURE (includes dry bulb, wet bulb, humidity).
 CIRCULATION (ocean currents on all scales).
 CLIMATE (general meteorological climate).
 DISPERSION (eddy dispersion in the sea, e.g. effluents).
 GROUNDWATER (submarine groundwater in coastal areas).
 INSTRUMENTS (equipment and instrumentation).
 PRESSURE (atmospheric pressure, effects on ocean).
 RAIN
 SALINITY (surface and subsurface).
 SEALEVEL (longer period sealevel oscillations).
 SEDIMENTS (transported by currents).
 TEMPERATURE (sea temperature, surface and subsurface).
 TIDES
 WATERMASSES (deduced from temperature/salinity properties).
 WAVES (surface gravity waves and swell).
 WIND

Format keywords

ATLAS (summary or compilation of data in diagrammatic form).
 BIBLIOGRAPHY (compilation of literature references).
 COLLECTION (collection of papers, e.g. symposium proceedings).
 DATA (largely a data report).
 PROPOSAL (proposals for research programmes).
 REVIEW (summary of work, not necessarily original).


Zone keywords

ESTUARIES
 SURF ZONE (shallow wave zone near the beach to about 5 m depth).
 SHELF (continental shelf region, say 5 to 200 m depths).
 DEEP OCEAN (beyond the shelf break, say more than 200 m depth).

Localities

Coastal areas (see the Location Chart) have been abbreviated as follows:

ABRohos islands
 BUNbury
 BUSSelton
 CApe CUVier
 CApe LEEwin
 CApe NATuraliste
 CApe PERon
 CARnarvon
 COckburn SouND
 DONgara
 EXMouth
 FREmantle
 GERaldton
 GUILDerton
 JURien
 LANcelin
 LESChenault inlet (= Bunbury)
 MOORE estuary (= Guilderton)
 MULLaloo
 North West CApe
 PEEL inlet
 PERth
 ROTTnest island
 SHaRK BAY
 SWAN estuary (= Fremantle)

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
ALLISON & GRASSIA	(1979)	AIR TEMPERATURE				
ALLISON, GRASSIA, LITCH.	(1980)	CIRCULATION				
ANDREWS	(1975a)	CLIMATE				
ANDREWS	(1975b)	DISPERSSION				
ANDREWS	(1976)	GROUNDWATER				
ANDREWS	(1977)	INSTRUMENTS				
ANDREWS	(1979)	ATMOS. PRESSURE				
ANONYMOUS	(1976)	RAIN				
ANONYMOUS	(1979)	SALINITY				
ANONYMOUS	(1981)	SEALEVEL				
AUROUSSEAU	(1958)	SEDIMENTS				
AUSTRALIA PILOT	(1972)	TEMPERATURE				
AUSTRALIAN GOVT PUBL.S.	(1976)	TIDES				
AUSTRALIAN TIDE TABLES	(1981)	WAVES				
BENNETT	(1939)	WIND				
BUCHWALD & MILES	(1981)	ATLAS				
BYE & BYE	(1974)	BIBLIOGRAPHY				
BYE & GORDON	(1982)	COLLECTION				
CHAPMAN	(1938)	DATA				
CLARKE & PENROSE	(1981)	PROPOSAL				
		REVIEW				
		ESTUARIES				
		SURF ZONE				
		CONTINENTAL SHF				
		DEEP OCEAN				
		GER, FRE, BUN				
		GER				

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
COLBORN (1971)						
CRESSWELL (1972)					X	DEEP OCEAN
CRESSWELL (1977)					X	CONTINENTAL SHELF
CRESSWELL & VAUDREY (1977)					X	
CRESSWELL, GOLDING, BOLAND (1978)					X	
CRESSWELL & GOLDING (1979)					X	
CRESSWELL & GOLDING (1980)					X	
CSIRO STATION LIST (1951-68)					X	
CSIRO STATION LIST (1968d)					X	
CSIRO CRUISE REPT. (1962-66)					X	
EASTON (1970)					X	
EDWARDS (1977)					X	
ENV. RES. AUSTRALIA (1970a)					X	
ENV. RES. AUSTRALIA (1970b)					X	
ENV. RES. AUSTRALIA (1970c)					X	
ENV. RES. AUSTRALIA (1971a)					X	COSND, FRE
ENV. RES. AUSTRALIA (1971b)					X	COSND
ENV. RES. AUSTRALIA (1971c)					X	COSND
ENV. RES. AUSTRALIA (1971d)					X	COSND

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
ENV. RES. AUSTRALIA (1972a)				X	X	CAPER
ENV. RES. AUSTRALIA (1972b)				X	X	COSND
ENV. RES. AUSTRALIA (1972c)				X	X	COSND
ENV. RES. AUSTRALIA (1972d)				X	X	COSND
ENV. RES. AUSTRALIA (1973a)				X	X	COSND
ENV. RES. AUSTRALIA (1973b)				X	X	COSND
ENV. RES. AUSTRALIA (1974a)				X	X	COSND
ENV. RES. AUSTRALIA (1974b)				X	X	COSND
ENV. RES. AUSTRALIA (1975)				X	X	COSND
GENTILLI (1972a)				X	X	
GENTILLI (1972b)				X	X	
GODEFREY & GOLDRING (1981)				X	X	
GODEFREY (1982)				X	X	
GOLDING, CRESSWELL, BOLAND (1977)				X	X	
GOLDING & SYMONDS (1978)				X	X	
GOLDING (1980)				X	X	
GREIG (1980)				X	X	
GREIG (1982)				X	X	
HAMON & STACEY (1960)				X	X	
HAMON (1965)				X	X	
FRE, ROTT, BUN, CANAT						

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEY WORDS	FORMAT	ZONE	LOCALITY
HAMON (1966)						
HAMON (1967)					X	GER, FRE, BUN
HAMON (1972)					X	
HAMON & CRESSWELL (1972)					X	
HAMON & GREIG (1972)					X	
HASTENRATH & LAMB (1979)					X	
HIGHLEY (1968)				X		
HODGKIN & DILOLIO (1958)				X		GER, FRE, BUN
HODGKIN & PHILLIPS (1969)				X		GER, ROTT, COSND
KITANI (1977)				X		X
K.N.M.I. (1949)				X		X
K.N.M.I. (1952)				X		X
LEGECKIS & CRESSWELL (1981)				X		X
LOGAN & CEBULSKI (1970)				X		SHKBAY
MARITIME WORKS BRANCH (1974)				X		COSND
MARITIME WORKS BRANCH (1976)				X		COSND
MARITIME WORKS BRANCH (1977a)				X		COSND
MARITIME WORKS BRANCH (1977b)				X		COSND
MARITIME WORKS BRANCH (1977c)				X		COSND
MARSHALLSAY & RADOK (1972)				X		X

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
MAXWELL & CRESSWELL (1981)						
MFAGHER & I.E. PROVOST (1975)						
MET. OFFICE (U.K.) (1949)					X	COSND
MET. OFFICE (U.K.) (1967)					X	
METRO. WSSDB (W.A.) (1982)					X	
MILLER & STONE (1972)					X	
NATAROV & PASHKIN (1968)					X	
NAT. OCEANIC DATA CENTRE (1967)					X	
NAVAL OCEAN. OFFICE (US) (1967)					X	
NIKPAJ & RADOK (1972)					X	
NOYE (1972)					X	
PASHKIN (1968)					X	
PETRISEVICS, ALLISON, CARBON (1979)					X	
PETRISEVICS (1980)					X	
PHILLIPS (1981)					X	
PROVIS & RADOK (1979)					X	
PUBLIC WORKS DEPT. (WA) (1976a)					X	CAR, FRE
PUBLIC WORKS DEPT. (WA) (1976b)					X	GUILD, FRE
PUBLIC WORKS DEPT. (WA) (1979)					X	GER
PUBLIC WORKS DEPT. (WA) (1980)					X	NWC to CALEE
					X	BUN

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
RADOK (1976)						
KOCHFORD (1951)					X	DEEP OCEAN
ROCHFORD (1958)					X	CONTINENTAL SHELF
ROCHFORD (1961)					X	SURF ZONE
ROCHFORD (1962)					X	ESTUARIES
ROCHFORD (1963)					X	REVIEW
ROCHFORD (1964)					X	PROPOSAL
ROCHFORD (1965)					X	DATA
ROCHFORD (1966)					X	COLLECTION
ROCHFORD (1967)					X	BIBLIOGRAPHY
ROCHFORD (1968)					X	ATLAS
ROCHFORD (1969a)					X	WIND
ROCHFORD (1969b)					X	WAVES
ROCHFORD (1970)					X	WATER MASSES
ROCHFORD (1971)					X	SEALEVEL
ROCHFORD (1972)					X	TEMPERATURE
ROCHFORD (1973)					X	SEDIMENTS
ROCHFORD (1974)					X	TIDES
ROCHFORD (1975)					X	WIND
ROCHFORD (1976)					X	WAVES
ROCHFORD (1977)					X	WATER MASSES
SCHOTT (1933)					X	SEALEVEL
SCOTT (1980)					X	TEMPERATURE
SHEEN LABS (1970)					X	ATMOS. PRESSURE
SILVESTER (1957)					X	INSTRUMENTS
SILVESTER & MITCHELL (1977a)					X	DISPERSSION
SILVESTER & MITCHELL (1977b)					X	GROUNDWATER
STEEDMAN & ASSOC. (1975a)					X	CLIMATE
STEEDMAN & ASSOC. (1975b)					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE
					X	DISPERSSION
					X	GRONDWATER
					X	CLIMATE
					X	CIRCULATION
					X	AIR TEMPERATURE

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT		KEYWORDS	FORMAT	ZONE	LOCALITY
		KEYWORD	KEYWORD				
STEEDMAN & ASSOC. (1975c)							COSND
STEEDMAN & ASSOC. (1975d)							COSND
STEEDMAN & ASSOC. (1975e)							COSND
STEEDMAN & ASSOC. (1976a)							DEEP OCEAN
STEEDMAN & ASSOC. (1976b)							CONTINENTAL SHELF
STEEDMAN & ASSOC. (1976c)							SURF ZONE
STEEDMAN & ASSOC. (1976d)							ESTUARIES
STEEDMAN & ASSOC. (1976e)							REVIEW
STEEDMAN & ASSOC. (1976f)							PROPOSAL
STEEDMAN & ASSOC. (1976g)							DATA
STEEDMAN & ASSOC. (1976h)							BIBLIOGRAPHY
STEEDMAN & ASSOC. (1976i)							COLLECTION
STEEDMAN & ASSOC. (1976j)							ATLAS
STEEDMAN & ASSOC. (1976k)							WIND
STEEDMAN & ASSOC. (1976l)							WAVES
STEEDMAN & ASSOC. (1976m)							TIDES
STEEDMAN & ASSOC. (1976n)							SEALeVEL
STEEDMAN & ASSOC. (1976o)							SALINITY
STEEDMAN & ASSOC. (1976p)							RAIN
STEEDMAN & ASSOC. (1976q)							ATMOS. PRESSURE
STEEDMAN & ASSOC. (1976r)							INSTRUMENTS
STEEDMAN & ASSOC. (1976s)							GROUNDWATER
STEEDMAN & ASSOC. (1976t)							DISPERsION
STEEDMAN & ASSOC. (1976u)							CLIMATE
STEEDMAN & ASSOC. (1976v)							CIRCULATION
STEEDMAN & ASSOC. (1976w)							AIR TEMPERATURE
STEEDMAN & ASSOC. (1977a)							
STEEDMAN & ASSOC. (1977b)							
STEEDMAN & ASSOC. (1977c)							
STEEDMAN & ASSOC. (1977d)							
STEEDMAN & ASSOC. (1977e)							
STEEDMAN & ASSOC. (1977f)							
STEEDMAN & ASSOC. (1978)							

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
STEEDMAN & ASSOC. (1979a)						COSND
STEEDMAN & ASSOC. (1979b)			X	X	X	EXM
STEEDMAN & ASSOC. (1979c)			X	X	X	COSND
STEEDMAN & ASSOC. (1979d)				X	X	CACTV
STEEDMAN & ASSOC. (1979e)				X	X	BUN
STEEDMAN & ASSOC. (1980a)				X	X	IAN
STEEDMAN & ASSOC. (1980b)			X	X	X	BUN
STEEDMAN & ASSOC. (1980c)			X	X	X	BUN
STEEDMAN & ASSOC. (1980d)				X	X	CAPER
STEEDMAN & ASSOC. (1980e)				X	X	COSND
STEEDMAN & ASSOC. (1980f)				X	X	
STEEDMAN & ASSOC. (1981a)			X	X	X	BUN
STEEDMAN & ASSOC. (1981b)				X	X	GER
STEEDMAN & ASSOC. (1981c)				X	X	CAPER
STEEDMAN & ASSOC. (1981d)				X	X	BUN
STEEDMAN & ASSOC. (1981e)				X	X	FRE
STEEDMAN & ASSOC. (1981f)				X	X	ROTT
STEEDMAN & ASSOC. (1981g)				X	X	CAPER
STEEDMAN & ASSOC. (1981h)				X	X	CAPER
STEEDMAN & ASSOC. (1982a)				X	X	COSND

INDEX TO PART 1

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
STEELMAN & ASSOC. (1982b)		AIR TEMPERATURE	CIRCULATION	X		
STEELMAN & CRAIG (1982)		CLIMATE	DISPERSION	X		
THOMPSON & VERONIS (1982)		GROUNDWATER	INSTRUMENTS	X		
TITTERTON & COWPER (1974)		RAIN	ATMOS. PRESSURE	X		
TUCK et al. (1980)		SEALEVEL	SEDIMENTS	X		
U.S. DEFENCE MAPPING (1976)	1970	TEMPERATURE	TIDES	X	X	
VAUX (1970)		WAVES	WIND	X	X	
WATERMAN (1969)		ATMOS. PRESSURE	ATLAS	X	X	
WATERMAN (1971a)		COLLECTION	DATA	X	X	
WATERMAN (1971b)		PROPOSAL	REVIEW	X	X	
WATERMAN (1972)		ESTUARIES	SURF ZONE	X	X	
WATERMAN (1973)		CONTINENTAL SHELF	DEEP OCEAN	X	X	
WATERMAN (1977)						
WEBSTER, GOLDING, DYSON (1979)						
WEDD & BEER (1978)						
WYRTKI (1962)						
WYRTKI (1971)						
WYRTKI (1973)						

INDEX TO PART 2

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
BEER & PENROSE (1977)						
BEER & BLACK (1979)					X	MOORE
BENNETT (1940)					X	PEEL
BESTOW (1975)					X	SWAN
BINNIE & PARTNERS (1981)					X	PER
BLACK et al. (1981)					X	
BRODIE - HALL (1972)					X	
BRODIE - HALL (1979)					X	
BRUNT & HOGAN (1956)					X	
BUREAU OF METEOROL. (monthly)					X	
BUREAU OF METEOROL. (1966)					X	
BUREAU OF METEOROL. (1969)					X	
BUREAU OF METEOROL. (1975)					X	
BUREAU OF METEOROL. (1980)					X	
CAMBRIDGE (1979)					X	
CARBON (1975)					X	COSND
CARROLL & DE CLARKE (1940)					X	PER
CHIFFINGS (1979)					X	BUN, PER, DON
CHIFFINGS & MCCOMB (1981)					X	COSND
CHITTLEBOROUGH & THOMAS (1969)					X	COSND

INDEX TO PART 2

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
CHITTLEBOROUGH & HAMON (1972)				X		
CHITTLEBOROUGH (1975)				X	X	PER
CHITTLEBOROUGH (1976)				X	X	COSND
COLEMAN (1972)				X		
COOGEE AIR POLL. S.G. (1974)				X		
COWPER (1970)				X		
CSIRO (1951-1957)				X	X	COSND
DEPT. CONS. ENV. (WA) (1979)				X	X	
EASTON (1968a)				X	X	CAR, GER, FRE, BUN
EASTON (1968b)				X	X	CAR, GER, FRE, BUN
GENTILLI (1969a)				X	X	SWAN
GENTILLI (1969b)				X	X	
GENTILLI (1971)				X	X	
GENTILLI (1979)				X	X	X
HAMON (1963)				X	X	CAR, GER, FRE, BUN
HODGKIN & MAJER (1978)					X	
HODGKIN, SANDARS, STANLEY (1979)					X	SWAN
HODGKIN et al. (1980)					X	PEEL
HOGAN (1948)					X	
HOUNAM (1945)					X	PER

INDEX TO PART 2

INDEX TO PART 2

AUTHOR(S)	YEAR	SUBJECT	KEYWORDS	FORMAT	ZONE	LOCALITY
PENROSE & BEER (1981)						
PHILLIPS (1975)					X	GUILD
PIERREHUMBERT (1974)					X	DON
PRESSCOTT (1979)					X	PER
PUBLIC WORKS DEPT. (W.A.) (1981)					X	
RAMAGE, MILLER, JEFFRIES (1972)				X		DEEP OCEAN
RIMMER (1980)				X		CONTINENTAL SHELF
ROBINS (1975)				X		SURF ZONE
ROCHFORD (1951a)				X		ESTUARIES
ROCHFORD (1951b)				X		REVIEW
ROCHFORD (1963)				X		PROPOSAL
ROCHFORD (1977)				X		DATA
RYE (1980)				X		COLLECTION
SEARLE & LOGAN (1978)				X		BIBLIOGRAPHY
SEARLE & LOGAN (1979)				X		ATLAS
SEDDON (1972)				X		WIND
SILVESTER (1956a)				X		WAVES
SILVESTER (1956b)				X		WATER MASSES
SMITH (1981)				X		TIDES
SOUTHERN (1979)				X		TEMPERATURE
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND
				X		WAVES
				X		WATER MASSES
				X		TIDES
				X		SEALLEVEL
				X		SEDIMENTS
				X		WIND

INDEX TO PART 2

Part 1. Oceanography 1933-58

Schott, G. (1933). Auftriebwasser an den australischen Westküsten? Ja und nein! (in German). Annalen der Hydrographie und Maritimen Meteorologie, 61, 225-333. (Translated into English by J. Rhemrev). (Discusses surface temperatures, currents and winds, in relation to upwelling).

Chapman, R. (1938). The tides of Australia. Yearbook, Commonwealth of Australia, 31, 972-984. (Description of tides around Australia, including Fremantle).

Bennett, A. (1939). The tides at Fremantle, Western Australia. Transactions of the Institution of Engineers of Australia, 20, 337-341. (Detailed study of tides at Fremantle).

K.N.M.I. (1949). Sea areas round Australia: Oceanographic and meteorological data. Koninklijk Nederlands Meteorologisch Institut, Publication 124, 79 p. (Comprehensive atlas of surface currents, surface atmospheric pressure and wind, precipitation, air and sea temperatures, and storms; area covered is 0°-50°S, 100°-180°E).

Meteorological Office. (1949). Monthly sea surface temperatures of Australian and New Zealand waters. H.M.S.O., Meteorological Office, M.O. 516, 12 charts. (Area covered is 10°-50°S, 100°-180°E).

CSIRO. (1951). Hydrological and planktological observations by F.R.V. Warren in South-western Australian waters, 1947-50. CSIRO Australia Oceanographical Station List, 3, 63 p, compiled by D.J. Rochford. (Hydrology casts on the shelf and open ocean to 1000 m depth).

Rochford, D.J. (1951). A comparison of the hydrological conditions off the eastern and western coasts of Australia. Proceedings Indo-Pacific Fisheries Council, section 2, 1-8. (Properties of Subsurface (salinity maximum) and Sub-Antarctic (salinity minimum) water masses off east and west coasts, 1947-1950).

CSIRO. (1952). Hydrological investigations in South-western Australia, 1944-50. CSIRO Australia Oceanographical Station List 8, 152 p, compiled by R.S. Spencer. (Hydrology sections across the inner shelf at Geraldton and Fremantle, as well as in some estuaries (Swan River, Peel-Harvey Inlet, and Leschenault Inlet)).

K.N.M.I. (1952). Indian Ocean, oceanographic and meteorological data. Koninklijk Nederlands Meteorologisch Institut, publication 135. (Not seen).

CSIRO. (1953a). Onshore hydrological investigations in eastern and south-western Australia. (1951). CSIRO Australia Oceanographical Station List, 14, 64 p, compiled by D.J. Rochford. (Includes hydrology sections across the inner shelf at Geraldton and Fremantle).

CSIRO. (1953b). Onshore hydrological investigations in eastern and south-western Australia. (1952). CSIRO Australia Oceanographical Station List, 17, 81 p, compiled by D.J. Rochford and R. Spencer. (Includes hydrology sections across the inner shelf off Geraldton and Fremantle).

CSIRO. (1954). Onshore hydrological investigations in eastern and south-western Australia. (1953). CSIRO Australia Oceanographical Station List, 18, 64 p, compiled by D.J. Rochford and R. Spencer. (Includes hydrology sections across inner shelf off Fremantle).

CSIRO. (1956). Onshore hydrological investigations in eastern and south-western Australia, 1954. CSIRO Australia Oceanographical Station List, 24, 119 p. Compiled by D.J. Rochford. (Includes hydrology sections across the inner shelf off Fremantle).

CSIRO. (1957a). Onshore and oceanic hydrological investigations in eastern and south-western Australia, 1955. CSIRO Australia Oceanographical Station List, 27, 145 p, compiled by D.J. Rochford and R. Spencer. (Includes hydrology sections across the inner shelf off Fremantle).

CSIRO. (1957b). Onshore and oceanic hydrological investigations in eastern and south-western Australia, 1956. CSIRO Australia Oceanographical Station List, 30, 79 p, compiled by D.J. Rochford and R. Spencer. (Includes hydrology sections across the inner shelf off Fremantle).

Silvester, R. (1957). The calculation of climatological ocean waves for specific points on a coastline. Journal of the Institution of Engineers Australia, 29, 283-296. Method of estimating waves at the coast from synoptic weather charts, applied to Geraldton, Fremantle and Bunbury).

Auroousseau, M. (1958). Surface temperatures of Australian seas. The older records from fixed stations. Journal of the Royal Society of New South Wales, 92, 104-114. (Some historical mean monthly temperature data at stations around Australia, including Carnarvon, Geraldton, the Abrolhos Islands, Fremantle and Albany).

CSIRO. (1958). Coastal hydrological investigations in eastern and south-western Australia, 1957. CSIRO Australia Oceanographical Station List, 33, 36 p, compiled by D.J. Rochford. (Includes hydrology sections across the inner shelf off Fremantle).

Hodgkin, E.P., & V. Di Lollo. (1958). The tides of South-Western Australia. Journal of the Royal Society of Western Australia, 41, 42-54. (Chief characteristics of tides at Fremantle, Geraldton, Bunbury and Albany; weather and hydrological effects).

Rochford, D.J. (1958). Characteristics and flow paths of the intermediate depth waters of the south-east Indian Ocean. Journal of Marine Research, 17, 483-504. (Study of salinity and oxygen distributions, water masses and circulation at intermediate depths (100 to 1300 m) in the south-eastern Indian Ocean to 55°S.).

Part 1. Oceanography 1960-65

Hamon, B.V., & F.D. Stacey. (1960). Sea-levels around Australia during the International Geophysical Year. Australian Journal of Marine and Freshwater Research, 11, 269-281. (Examines monthly mean sea-levels at stations around Australia, including Rottnest Island, Fremantle, Bunbury and Albany).

CSIRO. (1961). Coastal hydrology sampling at Rottnest Island, W.A., and Port Moresby, Papua, during the I.G.Y. (1957-58), and surface sampling in the Tasman and Coral Seas, 1959. CSIRO Australia Oceanographical Station List, 49, 239 p, compiled by A.D. Crooks. (Includes hydrology casts at Rottnest Island).

Rochford, D.J. (1961). Hydrology of the Indian Ocean, I. The water masses in intermediate depths of the southeast Indian Ocean. Australian Journal of Marine and Freshwater Research, 12, 129-149. (Temperature/salinity characteristics and water masses in area 0°-40°S, coast to 90°E in 1959 - 1960).

CSIRO. (1962a). Oceanographical observations in the Indian Ocean in 1959. HMAS Diamantina cruises Dm 1/59 and Dm 2/59. CSIRO Australia Oceanographical Cruise Report, 1, 134 p + figs. (Cruise Dm 2/59 covered the area 10° to 32°S, 100°E to coast; hydrology casts to 5000 m in SE Indian Ocean).

CSIRO. (1962b). Oceanographical observations in the Indian Ocean in 1960. HMAS Diamantina cruise Dm 1/60. CSIRO Australia Oceanographical Cruise Report, 2, 131 p + figs. (Cruise Dm 1/60 covered the area 32° to 40°S, 100° to 138°E; hydrology casts to 5000 m in SE Indian Ocean and Great Australian Bight).

CSIRO. (1962c). Oceanographical observations in the Indian Ocean in 1960. HMAS Diamantina cruise Dm 3/60. CSIRO Australia Oceanographical Cruise Report, 4, 39 p + figs. (Cruise Dm 3/60 covered the area 10° to 32°S, 83°E to coast; hydrology casts to 5000 m in the SE Indian Ocean).

Rochford, D.J. (1962). Hydrology of the Indian Ocean. II. The surface waters of the south-east Indian Ocean and Arafura Sea in the spring and summer. Australian Journal of Marine and Freshwater Research, 13, 226-251. (Zonation and water masses in the upper 500 m of the area 0°-40°S, coast to 90°E, in 1959-1961).

Wyrtki, K. (1962). Geopotential topographies and associated circulation in the south-eastern Indian Ocean. Australian Journal of Marine and Freshwater Research, 13, 1-17. Geostrophic currents relative to 1750 m in area 10°-40°S, 95°-140°E, in 1959-1960).

CSIRO. (1963a). Oceanographical observations in the Indian Ocean in 1960. HMAS Diamantina cruise Dm 2/60. CSIRO Australia Oceanographical Cruise Report, 3, 352 p + figs. (Cruise Dm 2/60 covered a line to 94°E off Fremantle, then NW shelf and Arafura Sea; hydrology casts to 5000 m).

CSIRO. (1963b). Oceanographical observations in the Indian Ocean in 1961. HMAS Diamantina cruise Dm 1/61. CSIRO Australia Oceanographical Cruise Report, 7, 80 p + figs. (Cruise Dm 1/61 covered the area 32° to 46°S, 105° to 131°E; hydrology casts to 5000 m in SE Indian Ocean and Southern Ocean).

CSIRO. (1963c). Oceanographical observations in the Indian Ocean in 1961. HMAS Diamantina cruise Dm 2/61. CSIRO Australia Oceanographical Cruise Report, 9, 156 p + figs. (Cruise Dm 2/61 had one station at 32°S, 112°E to 4000 m; otherwise NW shelf area).

Rochford, D.J. (1963). Mixing trajectories of intermediate depth waters of the south-east Indian Ocean as determined by a salinity frequency method. Australian Journal of Marine and Freshwater Research, 14, 1-23. (Study of salinity distribution, water masses and circulation at intermediate depths (400-1700 m), in the south-eastern Indian Ocean to 40°S).

CSIRO. (1964a). Oceanographical observations in the Indian Ocean in 1961. HMAS Diamantina cruise Dm 3/61. CSIRO Australia Oceanographical Cruise Report, 11, 215 p. (Cruise Dm 3/61 covered the area 10° to 32°S, 110°E to coast; hydrology casts to 5000 m in SE Indian Ocean and NW shelf area).

CSIRO (1964b). Oceanographical observations in the Indian Ocean in 1962. HMAS Diamantina cruise Dm 1/62. CSIRO Australia Oceanographical Cruise Report, 14, 128 p. (Cruise Dm 1/62 had two stations at 32°S, 112°E to 4400 m; otherwise NW shelf area).

CSIRO. (1964c). Oceanographical observations in the Indian Ocean in 1962. HMAS Diamantina cruise Dm 2/62. CSIRO Australia Oceanographical Cruise Report, 15, 117 p. (Cruise Dm 2/62 covered the area 5°N to 32°S, 95° to 114°E; hydrology casts to 5000 m in the SE Indian Ocean).

Rochford, D.J. (1964). Hydrology of the Indian Ocean. III. Water masses of the upper 500 m of the south-east Indian Ocean. Australian Journal of Marine and Freshwater Research, 15, 25-55. (Study of the salinity distribution, water masses and deduced circulation of the upper layer of the southeastern Indian Ocean, to 32°S).

CSIRO. (1965a). Oceanographical observations in the Indian Ocean in 1963. HMAS Gascoyne cruise G 1/63. CSIRO Australia Oceanographical Cruise Report, 21, 135 p. (Cruise G 1/63 had a line off Fremantle to 110°E, thence due north to 10°S; hydrology casts to 5000 m in the SE Indian Ocean).

CSIRO. (1965b). Oceanographical observations in the Indian Ocean in 1963. HMAS Diamantina cruise Dm 1/63. CSIRO Australia Oceanographical Cruise Report, 23, 175 p. (Cruise Dm 1/63 had a line off Fremantle to 110°E, thence due north to 10°S; hydrology casts to 5000 m in the SE Indian Ocean).

Part 1. Oceanography 1965-68

CSIRO. (1965c). Oceanographical observations in the Indian Ocean in 1963. HMAS Diamantina cruise Dm 2/63. CSIRO Australia Oceanographical Cruise Report, 24, 153 p. (Cruise Dm 2/63 had a line off Fremantle to 110°E, thence due north to 10°S; hydrology casts to 5000 m in the SE Indian Ocean).

CSIRO. (1965d). Oceanographical observations in the Indian Ocean in 1963. HMAS Diamantina cruise Dm 3/63. CSIRO Australia Oceanographical Cruise Report, 25, 147 p. (Cruise Dm 3/63 had a line off Fremantle to 110°E, thence due north to 10°S; hydrology casts to 5000 m in the SE Indian Ocean).

Hamon, B.V. (1965). Geostrophic currents in the south-eastern Indian Ocean. Australian Journal of Marine and Freshwater Research, 16, 255-271. (Geostrophic currents relative to 1750 m in area Java to 45°S, 80°-130°E, between 1960 and 1963).

Rochford, D.J. (1965). Rapid changes in the characteristics of the deep salinity maximum of the south-east Indian Ocean. Australian Journal of Marine and Freshwater Research, 16, 129-149. (Distribution and characteristics of the Deep Water (salinity maximum) in the southeast Indian Ocean in 1959-1963).

CSIRO. (1966a). Oceanographical observations in the Indian Ocean in 1962. HMAS Gascoyne cruise G 4/62. CSIRO Australia Oceanographical Cruise Report, 17, 151 p. (Cruise G 4/62 had a line off Fremantle to 110°E, thence due north to 10°S; hydrology casts to 5000 m in the SE Indian Ocean).

CSIRO. (1966b). Oceanographical observations in the Indian Ocean in 1962. HMAS Diamantina cruise Dm 3/62. CSIRO Australia Oceanographical Cruise Report, 18, 89 p. (Cruise Dm 3/62 had a line off Fremantle to 110°E, thence due south to 45°S; hydrology casts to 4400 m in the SE Indian and Southern Oceans).

Hamon, B.V. (1966). Continental shelf waves and the effects of atmospheric pressure and wind stress on sealevel. Journal of Geophysical Research, 71, 2883-2893. (Examines sealevel and atmospheric pressure variations around Australia, including Geraldton, Fremantle, Bunbury and Albany; interprets them as shelf waves).

CSIRO. (1967a). Oceanographical observations in the Pacific and Indian Oceans in 1962. HMAS Gascoyne cruises G 2/62 and G 3/62. CSIRO Australia Oceanographical Cruise Report, 16, 90 p + figs. (Cruise G 3/62 had a line of stations down the W.A. shelf break from 31°S into the Great Australian Bight; hydrology casts to 1100 m).

CSIRO. (1967b). Oceanographical observations in the Indian Ocean in 1962. HMAS Diamantina cruise Dm 4/62. CSIRO Australia Oceanographical Cruise Report, 20, 138 p. (Cruise Dm 4/62 had a line off Fremantle to 110°E, thence due north to 10°S; hydrology casts to 4000 m in the SE Indian Ocean).

CSIRO. (1967c). Oceanographical observations in the Indian Ocean in 1964. HMAS Diamantina cruise Dm 2/64. CSIRO Australia Oceanographical Cruise Report, 36, 53 p. (Cruise Dm 2/64 consisted of two lines from Fremantle to an area 6°N to 12°S, 92° to 95°E; hydrology casts to 5000 m in the eastern Indian Ocean).

Hamon, B.V. (1967). Medium-scale temperature and salinity structure in the upper 1500 m in the Indian Ocean. Deep-Sea Research, 14, 169-181. (Temperature and salinity structure along 58°E and 67°E in May/June 1964).

Meteorological Office. (1967). Quarterly surface current charts of the South Pacific Ocean. H.M.S.O., Meteorological Office, M.O. 435, 25 p. (Charts of quarterly surface current vectors and roses, from ship-drifts; includes West Australian waters to 100°E, and 60°S).

National Oceanographic Data Centre. (1967). Indian Ocean atlas. Interpolated values of depth, salinity and temperature on selected sigma-t surfaces. National Oceanographic Data Centre, General Series, Publication G-12, 61 p. (Sigma-t surfaces are 26.6, 26.8, 27.0, 27.2, 27.4, 27.6, for the Indian Ocean to 152°E, and 52°S).

Naval Oceanographic Office. (1967). Monthly charts of mean, minimum and maximum sea surface temperature of the Indian Ocean. U.S. Naval Oceanographic Office, Special Publication, SP-99, 48 p, compiled by P.E. La Violette and C. Mason. (Atlas using 100 years of ship injection temperatures for the Indian Ocean to 50°S).

Rochford, D.J. (1967). The phosphate levels of the major surface currents of the Indian Ocean. Australian Journal of Marine and Freshwater Research, 18, 1-22. (The salinity and phosphate distributions in the Indian Ocean are discussed in relation to the surface circulation and water mass movements).

CSIRO. (1968a). Oceanographical observations in the Indian Ocean in 1964. HMAS Diamantina cruise Dm 5/64. CSIRO Australia Oceanographical Cruise Report, 40, 48 p. (Cruise Dm 5/64 had a line off Fremantle to 112°E, thence a line to 10°S, 105°E; hydrology casts to 5000 m in the SE Indian Ocean).

CSIRO. (1968b). Investigations by F.V. Estelle Star in Western Australian waters in 1961. CSIRO Australia Oceanographical Station List, 57, 35 p. (Includes four cruises on shelf in vicinity of Fremantle and around Cape Leeuwin - surface hydrology only).

CSIRO. (1968c). Investigations by F.V. Estelle Star in Western Australian waters in 1962. CSIRO Australia Oceanographical Station List, 62, 37 p. (Includes two cruises on shelf in vicinity of Fremantle and around Cape Leeuwin - surface hydrology only).

Part 1. Oceanography 1968-70

CSIRO. (1968d). Drift bottle releases and recoveries in Western Australia, 1956-57. CSIRO Australia Oceanographical Station List, 79, 129 p. (Study of surface drifts on shelf between Shark Bay and Albany).

CSIRO. (1968e). Investigations by FRV Lancelin in Western Australian waters in 1963. CSIRO Australia Oceanographical Station List, 80, 38 p. (Hydrology sampling on inner shelf between Fremantle and Cape Leeuwin).

Highley, E. (1968). The International Indian Ocean Expedition: Australia's contribution. CSIRO Australia Division of Fisheries and Oceanography, Technical Paper, 28, 42 p. (Review of Australian activities during IIOE, mainly deep ocean hydrology, geostrophic currents and nutrients).

Natarov, V.V., & V.N. Pashkin (1968). Influence of oceanographic characteristics on the formation of commercial regions in waters adjoining Australia. Translated from: Works of the All-Union Scientific Research Institute of Marine Fisheries and Oceanography (VNIRO), 64, 130-141. (Description of hydrology and geostrophic currents on the Western Australian and Bight shelf areas).

Pashkin, V.N. (1968). Some aspects of hydrology of the waters of the shelf of west and south Australia. Translated from: Works of the All-Union Scientific Research Institute of Marine Fisheries and Oceanography (VNIRO), 64, 142-151. (Description of hydrology, water masses, nutrients and geostrophic currents on the western Australian and Bight shelf areas).

CSIRO. (1969a). Oceanographical observations in the Indian Ocean in 1963. HMAS Diamantina cruise Dm 6/63. CSIRO Australia Oceanographical Cruise Report, 30, 40 p. (Cruise Dm 6/63 consisted of stations on the outer shelf and upper slope between Fremantle and Onslow; hydrology casts to 500 m).

CSIRO. (1969b). Oceanographical observations in the Indian Ocean in 1964. HMAS Diamantina cruise Dm 1/64. CSIRO Australia Oceanographical Cruise Report, 33, 74 p. (Cruise Dm 1/64 consisted of stations on the outer shelf and upper slope between Fremantle and Onslow; hydrology casts to 500 m).

CSIRO. (1969c). Oceanographical observations in the Indian Ocean in 1964. HMAS Diamantina cruise Dm 4/64. CSIRO Australia Oceanographical Cruise Report, 38, 65 p. (Cruise Dm 4/64 consisted of stations on the outer shelf and upper slope between Fremantle and Onslow; hydrology casts to 500 m).

CSIRO. (1969d). Oceanographical observations in the Indian Ocean in 1965. HMAS Diamantina cruise Dm 2/65. CSIRO Australia Oceanographical Cruise Report, 49, 57 p. (Cruise Dm 2/65 covered the area 24° to 34°S, 107°E to coast; hydrology casts to 1500 m in the SE Indian Ocean).

CSIRO. (1969e). Oceanographical observations in the Indian Ocean in 1965. HMAS Diamantina cruise Dm 3/65. CSIRO Australia Oceanographical Cruise Report, 51, 60 p. (Cruise Dm 3/65 covered an area 24° to 34°S, 107°E to coast; hydrology casts to 1500 m in the SE Indian Ocean).

CSIRO. (1969f). Oceanographical observations in the Indian Ocean in 1966. HMAS Diamantina cruise Dm 1/66. CSIRO Australia Oceanographical Cruise Report, 53, 84 p. (Cruise Dm 1/66 covered the area 22° to 34°S, 108°E to coast; hydrology casts to 1500 m in the SE Indian Ocean).

Hodgkin, E.P., & B.F. Phillips. (1969). Sea temperatures on the coast of South Western Australia. Journal of the Royal Society of Western Australia, 52(2), 59-62. (Sea temperatures Cockburn Sound, Rottnest, Geraldton, plus Perth air temperature).

Rochford, D.J. (1969a). Seasonal variations in the Indian Ocean along 110°E. I. Hydrological structure of the upper 500 m. Australian Journal of Marine and Freshwater Research, 20, 1-50. (Distributions of temperature, salinity, oxygen and nutrients along 110°E (10° to 32°S) in 1962-63; includes ship-drift surface currents, and water mass circulations).

Rochford, D.J. (1969b). Seasonal interchange of high and low salinity surface waters off southwest Australia. CSIRO Australia Division of Fisheries and Oceanography Technical Paper, 29, 8 p. (Distribution and seasonal changes of water masses off Western Australia, from Rottnest Island and open ocean hydrology data, plus drift bottle returns).

Waterman, P. (1969). Case study No. 1: Southern flats area. Confidential report to Fremantle Port Authority, 48 p. (Water movements in southern Cockburn Sound June-September 1969; tides and winds).

Easton, A.K. (1970). The tides of the continent of Australia. Horace Lamb Centre for Oceanographic Research, Flinders University of South Australia, Research Paper, 37, 326 p. (Excellent comprehensive review of tides around Australia. Includes historical, tidal analysis tables of tidal data discussion of regional tides; south-west stations are northwest Cape, Geraldton, Fremantle and Bunbury).

Environmental Resources of Australia (1970a). Cockburn Sound Research: float tracking, Pilot Programme, May 1970. Confidential contract report to Australian Commonwealth Department of Works and Fremantle Port Authority. (Not seen - presumably study of circulation in Cockburn Sound).

Environmental Resources of Australia (1970b). Hydrology of Cockburn Sound. Winter-spring water exchange, November 1970. Confidential contract report to Australian Commonwealth Departments of Works, two volumes. (Documents hydrological research in Cockburn Sound; circulation in and flushing of the Sound, tides, winds, salinity and temperature observations).

Part 1. Oceanography 1970-72

Environmental Resources of Australia (1970c). Report on the ecology of Cockburn Sound. Winter 1970. Confidential contract report to Fremantle Port Authority, two volumes, 91 p + figs. (Includes review of hydrology and current results in the Sound (p 9-15, 71-73)).

Logan, B.W., & D.E. Cebulski. (1970). Sedimentary environments of Shark Bay, Western Australia. Carbonate Sedimentation and Environments, Shark Bay, Western Australia; The American Association of Petroleum Geologists, Memoir, 13, 1-37. (Bathymetry, winds, waves, tides, hydrology and circulation in Shark Bay in 1964/65).

Sheen Laboratories. (1970). Report on hydrology of Cockburn Sound. Summer-autumn water exchange. Confidential contract report to Australian Commonwealth Department of Works, 37 p. (Documents hydrological research in Cockburn Sound, March-May 1970; temperature and salinity data, oxygen, tides, winds).

Vaux, D. (1970). Surface temperature and salinity for Australian waters, 1961-65. CSIRO Australia Division of Fisheries and Oceanography, Atlas 1, 198 p. (Maps of monthly mean surface temperature and salinity for 1° blocks from 1961 to 1965; west coast limit 109°E).

Colborn, J.G. (1971). Thermal structure dynamics in the upper 500 metres of the Indian Ocean. U.S. Naval Undersea Research and Development Center, San Diego, Report, NUC TP 266, 99 p. (Statistical description of thermal structure in the Indian Ocean).

Colborn, J.G. (1971). The thermal structure of the Indian Ocean. International Indian Ocean Expedition, Oceanographic Monograph, 2, University Press of Hawaii. (Statistical description of thermal structure in the Indian Ocean, as in Colborn above).

Environmental Resources of Australia. (1971a). Water level oscillation in Cockburn Sound. Confidential contract report to Australian Commonwealth Department of Works, 113 p + figs. (Sealevel measurements in Cockburn Sound, with some current measurements, July 1970 to January 1971).

Environmental Resources of Australia. (1971b). Hydrology of Cockburn Sound. Autumn 1971. Confidential contract report to Commonwealth Department of Works, 45 p + figs. (Study of circulation in the Sound, including current meters, salinity measurements, and review of S.W. Australian coastal hydrology).

Environmental Resources of Australia. (1971c). Hydrology of Cockburn Sound, July 1971. Confidential contract report to Commonwealth Department of Works. (Not seen).

Environmental Resources of Australia. (1971d). An integration of hydrological investigations, Cockburn Sound. Winter 1971. Confidential contract report to Commonwealth Department of Works, Vol. 1 60 p, Vol. 2, 95 figs. (Results of hydrological studies in Cockburn Sound; circulation, dye releases, salinity distribution).

Waterman, P. (1971a). Case study No. 2: Kelvin-Hughes current metering Cape Peron to Garden Island Gap, May 1969-July 1970. Confidential contract report to Fremantle Port Authority, 77 p. (Current measurements across channel).

Waterman, P. (1971b). Case study No. 3. Hydrological Research, Cockburn Sound, 1970. Confidential contract report to Fremantle Port Authority, 85 p. (Study of tides, swell, longer-period waves, and currents (float-tracking and current meters) in Cockburn Sound, July 1970 to January 1971).

Wyrtki, K. (1971). Oceanographic atlas of the International Indian Ocean Expedition. (With E.B. Bennett and D.J. Rochford). National Science Foundation, Washington, 531 + x p. (Comprehensive atlas of temperature, salinity, nutrients, oxygen, dynamic topography - surface and at selected depths to the bottom, both as horizontal charts and vertical sections).

Australia Pilot. (1972). Vol. 5: North, north-west and west coasts of Australia from the west entrance of Endeavour Strait to Cape Leeuwin. Hydrographer of the Navy, London, 6th ed., 211 p. (Summary of climate, weather, bathymetry, coastal features, currents, tides).

Cresswell, G.R. (1972). Wind-driven ocean surface transport around Australia. CSIRO Australia Division of Fisheries and Oceanography Report, 52, 8 p. (Estimates of monthly Ekman transport in Australian waters from atmospheric pressure field, including daily time series off Perth for some months).

Environmental Resources of Australia. (1972a). Offshore current metering west of Garden Island, Western Australia, July-September 1972. Confidential contract report to Commonwealth Department of Works, 27 p + appendix. (Study of currents 2.4 km west of Garden Island, due to tides, shelf waves, winds, pressure gradients, eddies, and seasonal oceanic drift).

Environmental Resources of Australia. (1972b). An integration of hydrological investigations Cockburn Sound, December 1971. Confidential contract report to Australian Commonwealth Department of Works, 16 p + figs. (Study of circulation in the Sound and relation to winds, with drifting floats, current meters, dye releases, and salinity measurements).

Environmental Resources of Australia. (1972c). Nearshore hydrological investigations, Cockburn Sound, 1970-1972. Confidential contract report to Commonwealth Department of Works, 24 p + 27 figs. (Documents hydrological research along Kwinana-Rockingham shoreline, from May 1970 to April 1972; discusses nearshore currents, relation to wind and tide).

Part 1. Oceanography 1972-74

Environmental Resources of Australia. (1972d). An integration of hydrological investigations, Cockburn Sound, July-August 1972. Confidential contract report to Commonwealth Department of Works, 58 p + 68 figs. (Results of hydrological studies, July-August 1972; circulation in and flushing of Cockburn Sound, effect of offshore currents, salinity distribution, tides, winds and pressure effects, long-period waves).

Gentilli, J. (1972a). Ocean-atmosphere relations on the western Australian coast. In: "A report on a proposal for marine environmental studies off the western coast of Australia", compiled by L. Brodie-Hall, CSIRO State Committee, 17-37. (Compares Western Australian climate (ocean and atmosphere) with other west coasts around the world: rainfall, sea temperature, winds).

Gentilli, J. (1972b). Thermal anomalies in the eastern Indian Ocean. Nature, 238, 93-95. (Sea-surface temperature patterns in western Australian waters and the south-east Indian Ocean).

Hamon, B.V. (1972). Geopotential topographies and currents off West Australia, 1965-69. CSIRO Australia Division of Fisheries and Oceanography Technical Paper, 32, 11 p. (Geostrophic currents relative to 1300 m in area 24°-34°S, shelf-edge to 108°E.).

Hamon, B.V., & G.R. Cresswell. (1972). Structure functions and intensities of ocean circulation off east and west Australia. Australian Journal of Marine and Freshwater Research, 23, 99-103. (Discussion of length scales of circulation using structure functions of surface dynamic height).

Hamon, B.V., & M.A. Greig. (1972). Mean sealevel in relation to geodetic land leveling around Australia. Journal of Geophysical Research, 77, 7157-7162. (Compares mean sealevel with geodetic levels around Australia, including Carnarvon, Geraldton, Fremantle, Bunbury and Albany).

Marshall, P.G., & R. Radok. (1972). Drift cards in the Southern and adjacent oceans. Horace Lamb Centre for Oceanographic Research, Flinders University of South Australia, Research Paper, 52, 80 p. (Study of drift-card trajectories in Australian southern waters, including recoveries on south-west coast).

Miller, C.A., & P.B. Stone. (1972). Wave climate between Buller River and Woolaway Gully in Western Australia. University of New South Wales Water Research Laboratory Technical Report, 72/8, 32 p. (Wave measurements and analysis north of Geraldton).

Nikpalj, C.V., & R. Radok. (1972). The monitoring of Australian mean sealevels, 1966-1970, 1933-1970. Horace Lamb Centre for Oceanographic Research, Flinders University of South Australia, Research Paper 51. (Lists monthly mean sea-levels for various Australian ports, including Carnarvon, Geraldton, Fremantle, Bunbury and Albany, for 1966-70).

Noye, B.J. (1972). Meteorological tides and storm surges around Australia. Australian Marine Science Bulletin, 40, 17-24. (Discusses monthly mean sealevels around Australia, including Bunbury for 1966-1968, and effects of wind and atmospheric pressure).

Waterman, P. (1972). Case study No. 4: Kelvin-Hughes current metering Woodmans Point-Garden Island, North Cockburn Sound. October 1969-July 1970. Confidential report to Fremantle Port Authority, 1972. (Not seen).

Environmental Resources of Australia. (1973a). Hydrological investigations, Cockburn Sound, August 1973. Confidential contract report to Australian Commonwealth Department of Works, 2 vols. (Documents hydrological research in Cockburn Sound, August 1973; circulation, flushing, winds and pressure effects, dye dispersion, temperature and salinity distributions).

Environmental Resources of Australia. (1973b). An integration of hydrological investigations, Cockburn Sound, December 1972. Confidential contract report to Commonwealth Department of Works, 14 p + 45 figs. (Results of hydrological studies December 6-15, 1972; circulation in and flushing of Cockburn Sound, wind effects, salinity distribution).

Waterman, P. (1973). The hydrology of Cockburn Sound, Western Australia. Paper at 45th ANZAAS Congress, 13-17 August, 19 p. (Study of the circulation and hydrology in Cockburn Sound).

Wyrtki, K. (1973). Physical oceanography of the Indian Ocean. In: The biology of the Indian Ocean, ed. B. Zeitschel & S. Gerlach, Springer-Verlag, Berlin, 18-36. (Reviews the circulation, thermohaline structure, dynamic topography and nutrients, of the Indian Ocean to 50°S).

Bye, J.A.T., & J. Bye. (1974). Monthly and yearly mean sea levels around Australia, 1969-1972. Flinders Institute for Atmospheric and Marine Sciences, Flinders University of South Australia, Research Report, 13, 56 p. (Tabulates mean monthly sea-levels around Australia, including Carnarvon, Geraldton, Fremantle, Bunbury and Albany).

Environmental Resources of Australia. (1974a). Hydrological investigations, Cockburn Sound, December 1973. Confidential contract report to Australian Commonwealth Department of Works, 2 vols. (Documents hydrological research in Cockburn Sound, December 1973; circulation, flushing, tides, winds and pressure effects).

Part 1. Oceanography 1974-76

Environmental Resources of Australia. (1974b). Current metering Cockburn Sound. July-December 1970. Confidential contract report to Australian Commonwealth Department of Works, 55 p. (Results of current meter operations in the Sound).

Maritime Works Branch. (1974). Review of water movements in Cockburn Sound. Unpublished report, Australian Commonwealth Department of Housing & Construction, Report 56, 19 p + 15 figs. (Study of currents in Cockburn Sound, related to offshore (open-shelf) currents, wind-induced currents, tidal flows, long waves; numerical modelling).

Titterton, M., & T.R. Cowper. (1974). Atlas of oceanographical stations where measurements (physical-chemical) have been carried out by CSIRO Division of Fisheries and Oceanography 1938-1973. CSIRO Australia Division of Fisheries and Oceanography, unpublished atlas, 36 charts. (Charts of hydrology station availability in 1° squares for each year 1938 to 1973).

Andrews, J.C. (1975a). The active surface layer of the deep ocean. Part III. The thermograph as a tool in gathering synoptic thermohaline data. Australian Department of Defence, Weapons Research Establishment, WRE Technical Note, 897 (WR&D), July, 22 p. (Includes mean temperature/salinity curves for area 20°-40°S, coast to 110°E).

Andrews, J.C. (1975b). The active surface layer of the deep ocean. Part IV. Eddy structure and the West Australian Current. Australian Department of Defence, Weapons Research Establishment, WRE Technical Note, 1467 (WR&D), August, 28 p. (Study of thermal structure and geostrophic circulation in area 29°-37°S, shelf-edge to 108°E, in 1972-73).

Environmental Resources of Australia. (1975). Winter hydrology, Cockburn Sound, August-September 1974. Confidential contract report to Australian Department of Housing & Construction, 1, 24 p + 12 figs, 2, 109 p. (Documents hydrological research in Cockburn Sound, 25 July-19 September 1974; circulation in and flushing of the Sound, tides, winds and pressure effects, eddies).

Meagher, & LeProvost. (1975). Eutrophication in Cockburn Sound. Confidential contract report to Fremantle Port Authority, 92 p + figs. (Includes appendix B by Steedman & Associates (59 p) on "Hydrology for Cockburn Sound Ecology Programme, November 1974-April 1975"; circulation and flushing of the Sound).

Steedman, R.K., & Associates. (1975a). Physical oceanographic studies, Bunbury W.A. November-December 1974. Confidential contract report to Laporte Australia Ltd., 2 vols. (Initial studies to determine the feasibility of a marine pipeline disposal system. Current meters, tide and wind records, float tracking, temperature and salinity data at Bunbury).

Steedman, R.K., & Associates. (1975b). Summer hydrology, Cockburn Sound, December 1974-January 1975. Confidential contract report to Australian Department of Housing & Construction, 114 p. (Documents hydrological research in Cockburn Sound; circulation and flushing of the Sound, tides, winds, pressure effects).

Steedman, R.K., & Associates. (1975c). Hydrology for Cockburn Sound ecology programme. November 1974-April 1975. Confidential contract report to Australian Department of Housing & Construction and Fremantle Port Authority, 54 p. (Work complementary to ecological studies by Meagher and LeProvost. Moored current meters and velocity profiling, to study circulation and flushing of Sound).

Steedman, R.K., & Associates. (1975d). Autumn hydrology, Cockburn Sound. March-April 1975. Confidential contract report to Australian Department of Housing & Construction, 129 p. (Documents hydrological research in Cockburn Sound, circulation and flushing of the Sound, tides, winds and pressure effects; Appendix E discusses hydrodynamics of the flow).

Steedman, R.K., & Associates. (1975e). Winter hydrology, Cockburn Sound. July-August 1975. Confidential contract report to Australian Department of Housing & Construction, 121 p. (Documents hydrological research in Cockburn Sound, circulation and flushing of the Sound, tides, winds and pressure effects).

Andrews, J.C. (1976). The bathythermograph as a tool in gathering synoptic thermohaline data. Australian Journal of Marine and Freshwater Research, 27, 405-15. (Includes mean temperature/salinity curves and polynomials for area 20°-40°S, coast to 110°E, and geostrophic currents in autumn 1973).

Anonymous. (1976). CSIRO scientists buoyed by results of drift studies. Australian Fisheries, 35(4) 12-13. (Satellite-tracked buoy studies off western Australia in 1975/76).

Australian Government Publishing Service. (1976). Marine information manual, Australia. A.G.P.S. Canberra, 2nd edition. (Summary of weather, currents, around Australia).

Maritime Works Branch. (1976). Water movements Cockburn Sound. Unpublished report, Australian Commonwealth Department of Housing & Construction, Report No. 65. (Study of circulation in Cockburn Sound, and mathematical model results under various wind conditions).

Public Works Department of Western Australia (1976a). Moore River port study. Wilbinga, Western Australia. Feasibility of Port development. Public Works Department of Western Australia, Harbours and Rivers Branch, Coastal Investigation Section, Report CIS 76/3, 87 p + Appendices. (Feasibility study of a new port south of Guilderton - bathymetry, tides, currents, sediment movements, waves. Includes appendix by R.K. Steedman on wave climate. (No current measurements were made)).

Public Works Department of Western Australia. (1976b). Proposed construction of a fishing boat harbour at Port Denison. Investigation Report. Public Works Department of Western Australia, Harbour and Rivers Branch, Coastal Investigations Section, Report CIS 76/1, 80 p. (Investigation of proposed harbour at Port Denison - waves, tides, currents, sediment movements (includes current drogue observations)).

Part 1. Oceanography 1976-77

Radok, R. (1976). Australia's coast: an environmental atlas-guide with baselines. Rigby, 100 p. (Atlas review of Australia's coast, including Western Australia; tides and prediction; sealevel variations, air and sea temperatures, radiation, winds, rain, salinity; W.A. coastal stations, Carnarvon, Geraldton, Fremantle, Bunbury, Albany).

Steedman, R.K., & Associates. (1976a). Physical oceanographic studies, Bunbury W.A. April-September 1975. Confidential contract report to Laporte Australia Ltd. (Current meters, float tracking, temperature and salinity data at Bunbury).

Steedman, R.K., & Associates. (1976b). Beenup effluent outfall physical oceanographic studies, December 1975-March 1976. Confidential contract report to Metropolitan Water Supply, Sewerage & Drainage Board, Perth, 132 p + data tables. (Monitoring of currents off Mullaloo for effluent outfall; includes study of winds, waves, and swell, and estimates of eddy diffusion and mixing; also review of effluent dispersion).

Steedman, R.K., & Associates. (1976c). Effluent dispersal surveys, Koombana Bay, Bunbury, April 3-5 1976. Confidential contract report with Meagher & LeProvost to Laporte Australia Ltd. and Public Works Department of Western Australia. (Study of dispersion of experimental effluent releases. Current meters, wind, waves, sealevel, temperature, salinity, oxygen, effluent concentrations).

Steedman, R.K., & Associates. (1976d). Summer hydrology, Cockburn Sound. January-February 1976. Confidential contract report to Australian Department of Housing & Construction, 112 p. (Documents hydrological research in Cockburn Sound. Current meters, velocity profiles, wind, pressure, sea-level).

Steedman, R.K., & Associates. (1976e). Preliminary environmental design parameters for Laporte effluent submarine pipeline. Confidential contract report to Laporte Australia Ltd. and Public Works Department of Western Australia, 10 p + figs. (Bathymetry, geology, currents, waves and swell, winds and sea temperatures at Bunbury).

Steedman, R.K., & Associates. (1976f). Moore River port studies. Wave climate study. Confidential contract report to Public Works Department of Western Australia, 91 p. (Detailed study of winds at Fremantle, also Rottnest Island and Lancelin, and waves from Garden Island and Mullaloo measurements).

Steedman, R.K., & Associates. (1976g). Physical oceanographic studies, Bunbury, Western Australia. 3: current meter data. November 1974-November 1975. Confidential contract report to Laporte Australia Ltd. and Public Works Department of Western Australia. (Current meter data off Bunbury).

Steedman, R.K., & Associates. (1976h). Physical oceanographic studies, Bunbury, Western Australia. 4: current meter data, December 1975-October 1976. Confidential contract report to Laporte Australia Limited and Public Works Department of Western Australia. (Current meter data off Bunbury).

Steedman, R.K., & Associates. (1976i). Physical oceanographic studies, Bunbury, Western Australia. 6: meteorological and tidal data, November 1974-September 1976. Confidential contract report to Laporte Australia Limited and Public Works Department of Western Australia. (Winds, atmospheric pressure and tides at Bunbury).

Steedman, R.K., & Associates. (1976j). Estimated daily significant and maximum wave heights, Bunbury, Western Australia, for the period 5 March 1975 to 29 May 1976. R.K. Steedman & Associates, Technical Note 9, 11 p. (Tabulation of daily significant and maximum wave heights).

United States Defence Mapping Agency. (1976). Atlas of pilot charts: South Pacific and Indian Oceans. U.S. Defence Mapping Agency, Publication 107. (Monthly charts of winds, currents, air pressure and storms for Indian Ocean (10°-160°E, to 50°S); (also quarterly charts for South Pacific Ocean)).

Andrews, J.C. (1977). Eddy structure and the West Australian Current. Deep-Sea Research, 24, 1133-1148. (Study of thermal structure and geostrophic circulation in area 29°-37°S, shelf-edge to 108°E, in 1972/73).

Cresswell, G.R. (1977). The trapping of two drifting buoys by an ocean eddy. Deep-Sea Research, 24, 1203-1209. (Circulation of two buoys in an anti-cyclonic eddy southwest of Fremantle in May to July 1976, and effect of wind).

Cresswell, G.R., & D.J. Vaudrey. (1977). Satellite-tracked buoy data report 1. Western Australian releases 1975 and 1976. CSIRO Australia Division of Fisheries and Oceanography Report 86, 3 p + 46 figs. (Buoy trajectories and sea surface temperatures from 12 buoys in the south-east Indian and Southern Oceans).

Edwards, R.J. (1977). Hydrological investigations of R.V. Sprightly. April 1974-April 1975. CSIRO Australia Division of Fisheries and Oceanography Report, 73, 5 p + 40 figs. (Temperature, salinity and oxygen data down to 1500 m in area Geraldton to Fremantle, shelf-edge to 113°E, mainly in time-series format. Also Rottnest 50 m station data).

Golding, T.J., G.R. Cresswell, & F.M. Boland. (1977). Sea surface current and temperature data report from the "Sprightly" programme off Western Australia 1973-1976. CSIRO Australia Division of Fisheries and Oceanography Report, 90, 46 p. (Surface temperature and GEK current vector charts in area Geraldton to Fremantle, shelf-edge to 113°E, from November 1973 to October 1976).

Part 1. Oceanography 1977-78

Kitani, K. (1977). The movements and physical characteristics of the water off Western Australia in November 1975. Bulletin of Far Seas Fisheries Research Laboratory, 15, 13-19. (English translation by M.A. Hintze). (Temperature, salinity distributions, water masses and circulation, in area 24°-32°S, coast to 110°E).

Maritime Works Branch. (1977a). Western Australia Naval Support facility - Water movements Cockburn Sound. Unpublished report, Australian Commonwealth Department of Housing & Construction, Report MW77, 18 p + 29 figs. (Circulation and flushing of Cockburn Sound, tides and wind effects, numerical model results).

Maritime Works Branch. (1977b). Wave climate Cockburn Sound. Unpublished report, Australian Commonwealth Department of Housing & Construction, Report MW79, 151 p. (Wave data from 3 "waverider" buoys in Cockburn Sound, off 5-Fathom Bank and near Parmelia Bank from 1970 to 1976; statistical analysis and tables of data).

Maritime Works Branch. (1977c). The environmental significance of the Garden Island causeway, Cockburn Sound, Western Australia. Unpublished report, Australian Commonwealth Department of Housing & Construction, Report MW80, 17 p. (Reviews water movements in the Sound).

Rochford, D.J. (1977). Further studies of plankton ecosystems in the eastern Indian Ocean. 2. Seasonal variations in water mass distribution (upper 150 m) along 110°E. (August 1962 to August 1963). Australian Journal of Marine and Freshwater Research, 28, 541-555. (Describes water masses in upper layer of eastern Indian Ocean in 1962/63, with origins and T/S characteristics).

Silvester, R., & H.L. Mitchell. (1977a). Storm surges around Australian coastlines. 3rd Australian Conference on Coastal & Ocean Engineering, Melbourne, 18-21 April, 49-57. (Estimates storm surges around Australia from wind and pressure data; includes passage of cyclones).

Silvester, R., & H.L. Mitchell. (1977b). Ocean waves around the coastlines of Australia. Proceedings of the 6th Australian Hydraulics and Fluid Mechanics Conference, Adelaide, 5-9 December, 5 p. (Summarises wind and wave data and sealevel changes in 5° blocks around Australia, with seasonal tabulations for each square).

Steedman, R.K., & Associates. (1977a). Beenup effluent outfall, physical oceanographic studies (second report), July-September 1976. Confidential contract report to Metropolitan Water Supply, Sewerage and Drainage Board, 108 p. (Monitoring of currents off Mullaloo; includes study of winds, and eddy dispersion. Simple mathematical model).

Steedman, R.K., & Associates. (1977b). Progress report. Physical oceanographic aspects of Laporte effluent dispersion, coastal waters - Bunbury. Confidential contract report to Laporte Australia Ltd., 14 p. (Reviews work to December 1977 off Bunbury; currents, discussion of coastal dynamics and effluent dispersion).

Steedman, R.K., & Associates. (1977c). Mullaloo Marina, environmental investigations. Physical oceanographic studies. Confidential contract report to Shire of Wanneroo, compiled under supervision of Scott & Furphy Engineers. (Study of winds, storms, waves and swell, tides, and currents off Mullaloo; detailed tables of data).

Steedman R.K., & Associates. (1977d). Prediction of oil spill trajectories for the Abrolhos Island area, Western Australia. Confidential contract report to Esso Australia Limited, 46 p. (Estimates movements of oil slicks by wind-driven surface currents).

Steedman, R.K., & Associates. (1977e). Preliminary study of oceanographic and meteorologic conditions as affecting offshore exploration drilling, Abrolhos Island area, Western Australia. Confidential contract report to Esso Australia Limited, 128 p. (Study of winds, waves, currents and tides near Abrolhos islands (no currents measured)).

Steedman, R.K., & Associates. (1977f). Progress report 1. Review of progress for the period 1 August to 30 November 1977. Confidential contract report to Department of Conservation and Environment, Western Australia, 12 p. (Review of current and wind measurements in Cockburn Sound in spring 1977, and numerical model study).

Waterman, P. (1977). Measurement of longshore oceanic drift currents in the nearshore zone off Garden Island - Cockburn Sound, Western Australia. Conference of the Australian Institute of Geographers, February, 14 p. (Study of currents west of Garden Island and relation to sealevel and barometric pressure, in winter 1972).

Cresswell, G.R., T.J. Golding, & F.M. Boland. (1978). A buoy and ship examination of the Subtropical convergence south of Western Australia. Journal of Physical Oceanography, 8, 315-320. (Currents and temperature/salinity structure in area 36°-41°S, 110°-120°E, in Subtropical Convergence zone, using satellite-tracked buoys and hydrological data).

Golding, T.J., & G. Symonds. (1978). Some surface circulation features off Western Australia during 1973-1976. Australian Journal of Marine and Freshwater Research, 29, 187-191. (GEK current vectors between Geraldton and Fremantle, shelf-edge to 113°E, between 1973 and 1976; seasonal structure functions of circulation).

Part 1. Oceanography 1978-80

Steedman, R.K., & Associates. (1978). Progress report. Physical oceanography. Laporte effluent predictions. Confidential contract report to Laporte Australia Ltd. and Public Works Department of Western Australia, 46 p. (Effluent dispersion studies off Bunbury, and description of numerical circulation model).

Wedd, M., & T. Beer. (1978). Abrolhos Islands water movement study. Preliminary report. Western Australian Institute of Technology, Department of Physics Report, PD176/1978/AM14, 13 p. (Examines data from CSIRO Aanderaa RCM-4 current meters off Geraldton-Dongara from November 1973 to April 1975; discusses cross-correlations between records).

Allison, H., & A. Grassia. (1979). Sporadic sea-level oscillations along the Western Australian coast-line. Australian Journal of Marine and Freshwater Research, 30, 723-730. (Analysis of sealevels at Geraldton, Fremantle, Bunbury and Albany, showing 30 minute oscillations inshore of reef).

Andrews, J.C. (1979). Eddy structure and the West and East Australian currents. Flinders Institute of Atmospheric & Marine Sciences, Flinders University of South Australia, Research Report, 30, 172 p. (Detailed study of "West Australian Current" and associated eddy field, including thermal structure, dynamic topography and circulation, with dynamics of eddies; area 29°-37°S, shelf-edge to 108°E, in 1972/73).

Anonymous. (1979). Leeuwin Current revealed. Ecos, 22, November, 21-22. ("Popular" description of Leeuwin Current, shown by drifting buoys).

Cresswell, G.R., & T.J. Golding. (1979). Satellite-tracked buoy data report III. Indian Ocean 1977. Tasman Sea July-December 1977. CSIRO Australia Division of Fisheries and Oceanography Report, 101, 44 p. (Buoy trajectories and sea surface temperatures from three buoys in the south-east Indian Ocean).

Hastenrath, S., & P.J. Lamb. (1979). Climatic atlas of the Indian Ocean. Part I - Surface climate and atmospheric circulation. Part II - The oceanic heat budget. University of Wisconsin Press, 19 p + 97 charts and 26 p + 84 charts. (Atlas of oceanic surface and meteorological parameters for Indian Ocean to 30°S).

Petrusevics, P., H. Allison, & B. Carbon. (1979). Seiches on the Western Australian inner continental shelf. Search, 10, 399-400. (Seiches with periods of about 30 minutes were observed from current and tidal data off Mullaloo and Geraldton).

Provist, D.G., & R. Radok. (1979). Sea-level oscillations along the Australian coast. Australian Journal of Marine and Freshwater Research, 30, 295-301. (Study of sealevel fluctuations with periods 1-20 days and 20-365 days around Australia, including Fremantle and Carnarvon).

Public Works Department of Western Australia. (1979). Tidal information - Western Australian coast. Public Works Department of Western Australia, PWD WA 47574-2, 14 p. (Details of tide gauges and data for Western Australia, including a number between North West Cape and Cape Leeuwin).

Steedman, R.K., & Associates. (1979a). Numerical model study of circulation and other oceanographic aspects of Cockburn Sound. Confidential contract report by R.K. Steedman and P.D. Craig, to Western Australian Department of Conservation and Environment, 206 p. (Study of currents, temperature, salinity, wind in Cockburn Sound, plus numerical model of circulation).

Steedman, R.K., & Associates. (1979b). Meteorological conditions August to October 1978, Exmouth Plateau and general climatology. Confidential contract report by S.A. Stroud to E.G. & G. International Inc., 103 p + tables + figs. (Review of winds, air and sea temperatures, waves and swell, cyclones, and other meteorological phenomena for Exmouth Plateau area, partly from ship observations).

Steedman, R.K., & Associates. (1979c). Woodman Point Outfall. Physical oceanographic studies December 1977 to May 1979. Confidential contract report to Metropolitan Water Supply, Sewerage & Drainage Board, Perth, 173 p. (Study of circulation in Cockburn sound and relation to wind; effluent dispersion).

Steedman, R.K., & Associates. (1979d). Cape Cuvier oceanographic measurement programme, June-August 1979. Data Report. Confidential contract report to Dampier Salt Ltd. (Study of currents, waves, tides and winds at Cape Cuvier, near the jetty).

Steedman, R.K., & Associates. (1979e). Laporte effluent dispersion predictions. Confidential contract report to Laporte Australia Ltd., and Public Works Department of Western Australia. (Study of effluent dispersion off Bunbury and predicted plume trajectories; includes jet mixing study by Imberger, and numerical model of circulation).

Webster, I., T.J. Golding, & N. Dyson. (1979). Hydrological features of the near shelf waters off Fremantle, Western Australia, during 1974. CSIRO Australia Division of Fisheries and Oceanography Report, 106, 9 p + 15 figs. (Study of water masses, temperature, salinity, oxygen, and circulation of the ocean between Geraldton and Perth, to 113°E, in 1973/74).

Allison, H., A. Grassia, & R. Litchfield. (1980). Resonances of coastal waters between Perth and Geraldton (Western Australia). 17th International Conference on Coastal Engineering, Sydney, 23-28 March, 344-345. (Sealevel oscillations of period 30 minutes at Geraldton).

Part 1. Oceanography 1980-81

Cresswell, G.R. (1980). Satellite-tracked buoys in the eastern Indian Ocean. Proceedings of the 14th International Symposium on Remote Sensing of Environment, 23-30 April, Costa Rica, 531-541. (Study of Leeuwin Current off west coast using satellite-tracked buoys, and temperature and salinity data from shelf and slope areas).

Cresswell, G.R., & T.J. Golding. (1980). Observations of a south-flowing current in the southeastern Indian Ocean. Deep-Sea Research, 27A, 449-466. (Study of Leeuwin Current off west coast using satellite-tracked buoys, and temperature and salinity data from shelf and slope areas).

Golding, T.J. (1980). Currents off Western Australia. CSIRO Australia Division of Fisheries and Oceanography. Information Sheet, 16-2, 4 p. (Summary of ocean currents from Geraldton to Esperance).

Greig, M.A. (1980). Satellite-tracked buoy data report V. Bureau of Meteorology buoys tracked in the Southern Indian and Pacific Oceans, January to March 1979. CSIRO Australia Division of Fisheries and Oceanography Report, 120, 3 p + 44 figs. (Includes buoy trajectories and sea-surface temperatures from nine buoys in the south-east Indian Ocean, and Southern Ocean adjacent to Western Australia).

Petrusevics, P.M. (1980). Major factors in nearshore water movement, Mullaloo, Western Australia. Western Australian Institute of Technology, M. Appl. Science thesis, 161 p. (Detailed study of water movements near Mullaloo; climate and weather, bathymetry, wind-current correlations, mathematical model of wind-driven circulation).

Public Works Department of Western Australia. (1980). Prediction of extreme high ocean water level events for operation of the Bunbury storm surge barrier. Public Works Department of Western Australia, Harbours and Rivers Branch, Coastal Investigations Section Report, CIS 80/1, 31 p. (Weather events and sea levels at Bunbury, 1930-1979).

Scott, A. (1980). A brief analysis of sea and swell in the ocean approaches to the port of Fremantle. Unpublished note, Australian Bureau of Meteorology, 15 p. (Analysis of ship observations of waves and swell in 4° block off Fremantle, and relation to winds).

Steedman, R.K., & Associates. (1980a). Desk studies of the oceanography and meteorology of the Breton Bay region. Confidential contract report to Maunsell & Partners Pty. Ltd., 83 p. (Estimates of the winds, currents, storm surges, tides, temperature and salinity at Breton Bay (near Lancelin) from data mainly near Perth).

Steedman, R.K., & Associates. (1980b). Prediction of the Laporte Iron-acid waste dispersion in the Bunbury coastal waters, Western Australia. Confidential contract report by R.K. Steedman and P.D. Craig to Laporte Australia Limited and Public Works Department of Western Australia, 133 p. (Study of currents and winds off Bunbury and predictions of effluent dispersion; includes jet mixing study by Imberger, and numerical model of circulation).

Steedman, R.K., & Associates. (1980c). Desk study of proposed Muja pipeline effluent disposal Turkey Point (Bunbury area). Confidential contract report to Western Australian State Energy Commission, 18 p. (Theoretical estimates of currents near Bunbury and dispersion of effluent).

Steedman, R.K., & Associates. (1980d). Preliminary study of physical oceanographic characteristics for the proposed Cape Peron wastewater outfall. Confidential contract report to Binnie International (Australia) Pty. Ltd., 57 p. (Study of winds, waves, currents off Cape Peron, and application of numerical circulation model).

Steedman, R.K., & Associates. (1980e). Bunbury power station new development. Preliminary oceanography and meteorology. Confidential contract report by S.J. Buchan to Dames and Moore, 140 p. (Reviews winds, waves, storm surges, coastal circulation and tides at Bunbury, and atmospheric plume dispersion).

Steedman, R.K., & Associates. (1980f). Jervoise Bay investigations - oceanographic measurements July to November 1980. Operations report. Confidential contract report to Public Works Department, Western Australia, 17 p. (Wind, current, wave, sealevel measurements in Jervoise Bay).

Tuck, E.O., H. Allison, S.R. Field, & J.W. Smith. (1980). Effect of a submerged reef chain on periods of sea-level oscillations in Western Australia. Australian Journal of Marine and Freshwater Research, 31, 719-727. (Mathematical and hydraulic model study of sealevel oscillations inshore of submerged reef chain).

Anonymous. (1981). Space satellites reveal W.A. ocean currents. Fishing Industry News Service, 14, 3-8. ("Popular" description of Western Australian currents, shown by drifting buoys and satellite temperature maps).

Australian Tide Tables. (1981). Australian National Tide Tables 1982. Australia, Papua New Guinea, and Antarctica. Australian Government Publishing Service, Hydrographic Publication, 11, 248 p (an annual series). (Daily times and sealevels for high and low tides for Australian ports, including Pt. Murat (North West Cape), Carnarvon, Geraldton, Fremantle and Bunbury; plus corrections for secondary ports).

Part 1. Oceanography 1981-82

Buchwald, V.T., & J.W. Miles. (1981). On resonance of an offshore channel bounded by a reef. Australian Journal of Marine and Freshwater Research, 32, 833-41. (Mathematical model of sealevel oscillations in a coastal lagoon fringed by a reef, applied to W. Australia and the Great Barrier Reef).

Clark, S.A., & J.D. Penrose. (1981). Current metering near the Five Fathom Bank, west of Garden Island, Western Australia. Western Australian Institute of Technology, School of Physics Report, SPG264/1981/AP8, 21 p + 82 tables and figures. (Presents results from Aanderaa RCM-4 current meters moored in 20 m water depth west of Garden Island from December 1979 to December 1980).

Godfrey, J.S., & T.J. Golding. (1981). The Sverdrup relation in the Indian Ocean, and the effect of Pacific-Indian Ocean throughflow on Indian Ocean circulation and on the East Australian Current. Journal of Physical Oceanography, 11, 771-779. (Includes discussion on lack of upwelling off Western Australia).

Legeckis, R., & G. Cresswell. (1981). Satellite observations of sea surface temperature fronts off the coast of western and southern Australia. Deep-Sea Research, 28, 297-306. (Sea-surface temperature maps off western Australia and in the Great Australian Bight, showing the Leeuwin Current).

Maxwell, J.G.H., & G.R. Cresswell. (1981). Dispersal of tropical marine fauna to the Great Australian Bight by the Leeuwin Current. Australian Journal of Marine and Freshwater Research, 32, 493-500. (Discusses the Leeuwin Current - current, temperature and salinity evidence from Fremantle to the Bight).

Phillips, B.F. (1981). The circulation of the south-eastern Indian Ocean and the planktonic life of the western rock lobster. Oceanography and Marine Biology Annual Review, 19, 11-39. (Reviews circulation in SE Indian ocean, including Leeuwin Current).

Steedman, R.K., & Associates. (1981a). Bunbury power station new development. Preliminary oceanography and meteorology, environmental considerations. Confidential contract report to T.D. Meagher & Associates, 88 p. (Reviews winds, coastal circulation, temperature and salinity at Bunbury; warm effluent dispersion and atmospheric plume dispersion).

Steedman, R.K., & Associates. (1981b). Oakajee River wave measurements and analysis, March to September 1980. Confidential contract report to Public Works Department of Western Australia, 79 p. (Waves measured at Oakajee River (28°35'S)).

Steedman, R.K., & Associates. (1981c). Progress report July 1981: Cape Peron wastewater ocean outlet study. Confidential contract report to Binnie & Partners, July 1981, 33 p + figs. (Study of waves, currents, temperature/salinity, off Cape Peron for proposed outfall; discussion of coastal dynamics).

Steedman, R.K., & Associates. (1981d). Bunbury Power Station - new development. Storm surge levels at the coastline. Confidential contract report by S.A. Stroud and S.J. Buchan, to Dames and Moore, 57 p. (Meteorologically-forced sealevels at Bunbury, 1930 to 1980).

Steedman, R.K., & Associates. (1981e). Record of storms, Port of Fremantle, 1962-1980. Confidential contract report to Public Works Department of Western Australia, 13 p + figs. (Examination of wind records at Fremantle for storms).

Steedman, R.K., & Associates. (1981f). Water current speed and direction measurements, Parmelia 1, Offshore Perth, Western Australia, May 1981. Confidential contract report by S.A. Stroud and G. McMahon to West Australian Petroleum, 74 p. (Current profiles at shelf break off Perth, over a 13 day period).

Steedman, R.K., & Associates. (1981g). Cape Peron wastewater ocean outlet. Effluent dispersion studies. Confidential contract report to Binnie and Partners, 2 vols, 30 p. + figs. (Study of coastal circulation off Cape Peron in connection with effluent dispersion).

Steedman, R.K., & Associates. (1981h). Cape Peron wastewater ocean outlet study. Engineering considerations of physical oceanography. Confidential contract report by S.J. Buchan to Binnie and Partners, 2 vols. (Study of currents, winds, waves, tides, salinity and temperature off Cape Peron, in connection with effluent dispersion).

Bye, J.A.T., & A.H. Gordon. (1982). Speculated cause of interhemispheric oceanic oscillation. Nature, 296, 52-54. (Study of mean sealevel anomalies in the eastern Indian Ocean (including Geraldton, Fremantle and Bunbury) and relation to atmospheric influences and general oceanic circulation).

Godfrey, J.S. (1982). Notes on the physics of the Leeuwin Current. (Manuscript in preparation). (Mathematical model of Leeuwin Current, presenting currents and sealevels on the inner shelf and over the slope).

Grieg, M.A. (1982). Satellite-tracked buoy data report VI. Bureau of Meteorology buoys tracked in the Southern, Indian and Pacific Oceans March to June 1979. CSIRO Australia Marine Laboratories Report, 137. 40 p. (Includes buoy trajectories and sea-surface temperatures from 13 buoys in the south-east Indian Ocean, and Southern Ocean adjacent Western Australia).

Metropolitan Water Supply, Sewerage & Drainage Board. (1982). Cape Peron ocean outlet. Environmental review and management programme. Metropolitan Water Supply, Sewerage and Drainage Board, 2 vols. 142 + 170 p. (Includes Steedman's work on circulation and dispersion of effluent, with numerical model of wind-driven circulation).

Part 1. Oceanography 1982

Steedman, R.K., & Associates. (1982a). Jervoise Bay investigations - oceanographic measurements July 1980 to November 1981. Data report. Confidential contract report to Harbours & Rivers Branch, Western Australian Public Works Department. (Study of currents, waves, tides and wind in Jervoise Bay in 1980/81).

Steedman, R.K., & Associates. (1982b). Preliminary study of oceanic and tidal currents and extreme winds, waves and storm surges for various locations around Australia's northern and western coast. Confidential contract report by S. Buchan and S. Stroud to Oceanographic Services Inc. (Review of oceanographic conditions at four locations in NW and northern Australia, plus Perth).

Steedman, R.K., & P.D. Craig. (1982). Wind-driven circulation of Cockburn Sound. Submitted to Australian Journal of Marine and Freshwater Research. (Numerical model of wind-driven circulation in Cockburn Sound, and estimates of exchange with open sea).

Thompson, R.O.R.Y., & G. Veronis. (1982). A poleward boundary current off Western Australia. Manuscript accepted. Australian Journal of Marine and Freshwater Research. (Mathematical model of Indian Ocean circulation driven by seasonal wind stress; generates Leeuwin Current).

Part 2. Meteorology etc. 1932-51

Morgan, C.P. (1932). Geraldton harbour works. Journal of the Institution of Engineers of Australia, 4, 415-425. (Not seen).

Bennett, A. (1940). Tides in the Swan River estuary. Transactions of the Institution of Engineers of Australia, 21, 195-198. (Study of the propagation of the tide up the Swan River to Perth and Guildford).

Carroll, D., & E. De C. Clarke. (1940). Load carried by flood waters in the south-west. Journal of the Royal Society of Western Australia, 26, 173-179. (Observations in North Irwin, Swan, Chittering Brook, Collie, Preston; flow velocity, discharge, sediment loads).

Hounam, C.E. (1945). The sea breeze at Perth. R.A.A.F. Meteorological Services, Weather Development and Research Bulletin, 3, 20-55. (Discusses theoretical aspects and observations of sea-breeze at Perth, as well as five other coastal stations).

Teichert, C. (1947). Contributions to the geology of Houtman's Abrolhos, Western Australia. Proceedings of the Linnean Society of New South Wales, 71, parts 3-4, 145-195, plus 11 plates. (Includes discussion of tides at the Abrolhos).

Hogan, J. (1948). Meteorology of the Indian Ocean area between Western Australia and India. Australian Bureau of Meteorology Bulletin, 40, 88 p. (Discussion of monthly winds and weather of eastern Indian Ocean to 40°S).

Kempin, E.T. (1949). The problem of sand movement in Cockburn Sound and approaches to Fremantle, West Australia, and its application to beach erosion problems at Cottesloe, W.A. Honours thesis, Geology Department, University of Western Australia, 90 p + figs. (Discussion of wave- and current-induced sediment drift at Cottesloe and vicinity. (Cockburn Sound to Cottesloe)).

CSIRO. (1951). Estuarine hydrological investigations in eastern and south-western Australia, 1951. CSIRO Australia Oceanographical Station List, 12. (Not seen).

Kempin, E.T. (1951). Beach sand movements at Cottesloe, Western Australia. Journal of the Royal Society of Western Australia, 37, 35-58 + table. (Discusses winds, currents, tides and littoral sediment drift between Fremantle and Cottesloe).

Rochford, D.J. (1951a). Summary to date of the hydrological work of the Fisheries Division, CSIRO. Proceedings of the Indo-Pacific Fisheries Council, 2, 51-59. (Includes very brief discussion on hydrology and currents west of Rottnest Island).

Rochford, D.J. (1951b). Studies in Australian estuarine hydrology. I. Introductory and comparative features. Australian Journal of Marine and Freshwater Research, 2, 1-116. (General study of Australian estuaries, including temperature, chlorinity and nutrients in the Swan River).

Part 2. Meteorology etc. 1953-66

CSIRO. (1953a). Estuarine hydrological investigations in eastern and south-western Australia, 1952. CSIRO Australia Oceanographical Station List, 15, 100 p, compiled by D.J. Rochford and R.S. Spencer. (Hydrology work in estuaries, including Swan River, Peel-Harvey Inlet, and Leschenault Inlet).

CSIRO. (1953b). Analysis of bottom deposits in eastern and south-western Australia, 1952, and records of twenty-four hourly hydrological observations at selected stations in eastern Australian estuarine systems, 1952. CSIRO Australia Oceanographical Station List, 16, 79 p, compiled by D. Rochford and R. Spencer. (Includes hydrology work in the Swan River).

CSIRO. (1953c). Estuarine hydrological investigations in eastern and south-western Australia, 1953. CSIRO Australia Oceanographical Station List, 21, 96 p, compiled by D.J. Rochford and R. Spencer. (Hydrology work in estuaries, including Swan River and Peel-Harvey Inlet).

Hydrographic Office. (1955). Atlas of pilot charts. South Pacific and Indian Oceans. U.S. Navy Hydrographic Office, H.O. Publication, 577, 16 charts. (Monthly charts of surface winds and pressure of the Indian Ocean (to 160°E, and 50°S) and quarterly charts for the South Pacific Ocean).

Brunt, A.T. & J. Hogan. (1956). The occurrence of tropical cyclones in the Australian region. Proceedings of the Tropical Cyclone Symposium, Brisbane, December, 5-18. (Study of 38 years of cyclone records for west coast for months December to April, to latitude 35°S).

CSIRO. (1956). Estuarine hydrological investigations in eastern and south-western Australia, 1954. CSIRO Australia Oceanographical Station List, 26, 123 p, compiled by D.J. Rochford. (Hydrology work in estuaries, including Swan River and Peel-Harvey Inlet).

McArthur, W.M. (1956). Plant ecology of the coastal islands near Fremantle, W.A. Journal of the Royal Society of Western Australia, 40, 46-64. (Includes table (Appendix II) of climatological data for Rottnest Island).

Silvester, R. (1956a). A model study of littoral drift at Bunbury Harbour, W.A. Journal of the Institution of Engineers of Australia, 28, 219-230. (Examination of littoral drift in hydraulic model of Bunbury harbour).

Silvester, R. (1956b). Beach erosion at Cottesloe, W.A. Transactions of the Institution of Engineers of Australia, 37, 27-33. (Study of wind-generated waves and sediment transport between Fremantle and Trigg Island, including hydraulic model).

Spencer, R.S. (1956). Studies in Australian estuarine hydrology. II. The Swan River. Australian Journal of Marine and Freshwater Research, 7, 193-253. (Discusses climate (rain, wind) of Perth, tides, temperature, chlorinity, oxygen, nutrients, circulation in Swan River).

CSIRO. (1957a). Estuarine hydrological investigations in eastern and south-western Australia, 1955. CSIRO Australia Oceanographical Station List, 29, 93 p, compiled by R.S. Spencer. (Hydrology work in estuaries, including Swan River and Peel-Harvey Inlet).

CSIRO. (1957b). Estuarine hydrological investigations in eastern and south-western Australia, 1956. CSIRO Australia Oceanographical Station List, 32, 170 p, compiled by R.S. Spencer. (Hydrology work in estuaries, including Swan River and Peel-Harvey Inlet).

Logan, B.W. (1959). Environments, foraminiferal facies and sediments of Shark Bay, Western Australia. Ph.D. thesis, Geology Department, University of Western Australia, 288 p + tables. (Includes bathymetry, climate data from Carnarvon and Hamelin Pool, temperature and salinity in 1957/58, tides and tidal currents. (pp. 48-67)).

O'Mahoney, G. (1961). Time-series analysis of some Australian rainfall data. Australian Bureau of Meteorology, Meteorological Study, 14, 65 p. (Correlograms and spectra of rainfall at capital cities, including Perth).

Yentsch, A.E. (1962). A partial bibliography of the Indian Ocean. Woods Hole Oceanographic Institute, 391 + p. (Includes cruise expeditions, physical and chemical oceanography, geology, meteorology, and biology).

Hamon, B.V. (1963). Australian tide recorders. CSIRO Australia Division of Fisheries and Oceanography Technical Paper, 15, 32 p. (Details of tide gauges around Australia, including Carnarvon, Geraldton, Fremantle, Bunbury, Albany).

Rochford, D.J. (1963). Some features of organic phosphorus distribution in the south-east Indian and south-west Pacific Oceans. Australian Journal of Marine and Freshwater Research, 14, 119-138. (Organic phosphorus distribution to the bottom along sections around Australia, including one at about 117°E; the water mass circulation is briefly discussed).

Whittingham, H.E. (1964). Extreme wind gusts in Australia. Australian Bureau of Meteorology Bulletin, 46, 133 p. (Study of extreme wind gusts at various sites in Australia, including Perth and Geraldton).

Wood, E.J.F. (1964). Studies in microbial ecology of the Australasian Region, I-VII. Nova Hedwigia 8, 5-54, 453-568. (Temperature-salinity limits of ecological areas for plankton, including SE Indian Ocean waters).

Bureau of Meteorology. (1966). Climatic survey region 15- metropolitan Western Australia. Australian Bureau of Meteorology, Meteorological Summary, 162 + p. (Summary of factors controlling weather and climate; rainfall, evaporation, temperature, humidity, solar radiation, sunshine, cloud, wind, floods, thunderstorms and hail statistics; tables and charts).

Part 2. Meteorology etc. 1968-74

Easton, A.K. (1968a). The frequency response of selected Australian tide gauges. Horace Lamb Centre for Oceanographic Research, Flinders University of South Australia, Research Paper, 24. (Includes the tide gauges at Carnarvon, Geraldton, Fremantle, Bunbury and Albany).

Easton, A.K. (1968b). A handbook of selected Australian tide gauges. Horace Lamb Centre for Oceanographic Research, Flinders University of South Australia, Survey Paper, 6. (Not seen).

Bureau of Meteorology. (1969). The climate of Perth, Western Australia. Australian Bureau of Meteorology, Capital City Series, 184 p + charts. (Summary of factors controlling weather and climate; temperature, humidity, rainfall, storms, evaporation, sunshine, cloud, radiation, wind, pressure, coastal waters, comparison with other Australian capital cities; tables and charts).

Chittleborough, R.G., & L.R. Thomas. (1969). Larval ecology of the Western Australian marine crayfish, with notes upon other Panulirid larvae from the eastern Indian Ocean. Australian Journal of Marine and Freshwater Research, 20, 199-223. (Includes estimates of wind-driven offshore current in spring/summer, and temperatures in Cockburn Sound, 1963-1967).

Gentilli, J. (1969a). The Swan River and its estuary - a review. Hesperides, 7-16. (Review of water circulation, river discharge, tidal effects, and hydrology of the Swan River estuary).

Gentilli, J. (1969b). Some regional aspects of southerly buster phenomena. Weather, 24, 173-180. (Study of the passage of cold fronts along the southern parts of Australia).

Cowper, T.R. (1970). Scientific reports of cruises of T.S. Fukushima Maru (August 31-October 9, 1964; June 8-July 19, 1965) and F.V. Suruga Maru (September 27-December 2, 1965). CSIRO Australia Division of Fisheries and Oceanography Report, 48, 47 p. (The Suruga Maru circum-navigated Australia. Stations 40 to 55 were between Cape Leeuwin and Shark Bay).

Gentilli, J. (1971). Climates of Australia and New Zealand. World Survey of Climatology, 13, Elsevier, Amsterdam, 405 p. (Detailed discussion and review of Australian weather and climate).

Wright, P.B. (1971). Spatial and temporal variations in seasonal rainfall in south-western Australia. University of Western Australia Institute of Agriculture, Department of Agronomy, Miscellaneous Publication, 71/1, 89 p. (Detailed study of variability of rainfall of area south of 26°S).

Brodie-Hall, L.C. (compiler). (1972). A report on a proposal for marine environmental studies off the western coast of Australia. Report by Western Australian State Committee of CSIRO, 70 p. (Proposal for Western Australian coastal studies; includes contributions on coastal ecology (by Ride), ocean-atmosphere relations (Gentilli), and effluent disposal at sea).

Chittleborough, R.G., & B.V. Hamon. (1972). A statement on the need for marine environmental studies off the western coast of Australia. In: "A report on a proposal for marine environmental studies off the western coast of Australia", compiled by L.C. Brodie-Hall, CSIRO State Committee, 5-11. (Recommendations for current meter moorings and temperature measurements on shelf, and XBT work from merchant ships in open ocean).

Coleman, F. (1972). Frequencies, tracks and intensities of tropical cyclones in the Australian region 1909 to 1969. Australian Bureau of Meteorology, Meteorological Summary, 45 p + 44 figs. (Cyclone tracks, frequencies and central pressures off Western Australia).

Lenanton, R.C.J. (1972). Bibliography of information relating to the south-western Australian estuarine environment. Western Australian Department of Fisheries and Fauna, Fisheries Bulletin, 11, 11 p. (Lists 102 references on geography, geology, hydrology, and biological sciences).

Newton, C.W. (ed.) (1972). Meteorology of the southern hemisphere. American Meteorological Society, Meteorological Monographs, 13(35), 263 p. (Good general description of southern hemisphere meteorology).

Ramage, C.S., F.R. Miller, & C. Jeffries. (1972). Meteorological atlas of the International Indian Ocean Expedition. 1: the surface climate of 1963 and 1964. National Science Foundation, Washington. (Not seen).

Seddon, G. (1972). Sense of place: a response to an environment, the Swan coastal plain, Western Australia. University of Western Australia Press, Perth, 270 p. (Includes useful brief summary of climate: rainfall, air temperature, wind, mainly Perth (20-26)).

Coogee Air Pollution Study Group. (1974). Coogee air pollution study. Report to Western Australian Environmental Protection Council, 137 p. (Includes monthly wind roses at Coogee (Cockburn Sound) for January 1973 to February 1974).

Morgan, G.R. (1974). Aspects of the population dynamics of the western rock lobster, Panulirus cygnus George. II. Seasonal changes in the catchability coefficient. Australian Journal of Marine and Freshwater Research, 25, 249-259. (Includes monthly bottom temperatures and salinities at Rat Island (Abrolhos Group) from November 1969 to March 1973 (p. 254)).

Part 2. Meteorology etc. 1974-77

Morgan, G.R., & E.H. Barker. (1974). The Western Rock Lobster fishery 1972-1973. Western Australian Department of Fisheries and Wildlife, Report, 15, 22 p. (Includes summary of bottom temperatures and surface salinities for water shallower than 35 m at Fremantle, Lancelin, Jurien and Dongara, in 1972-73).

Pierrehumbert, C.L. (1974). Point rainfall intensity - frequency-duration data. Capital cities. Australian Bureau of Meteorology Bulletin, 49, 230 p. (Analysis of rain and rainstorms at capital cities, including Perth).

Bestow, T.T. (1975). The Swan coastal plain: Water balance of the coastal plain - present. In: Groundwater Resources of the Swan Coastal Plain, Symposium, Murdoch University, 10-11 December, ed. B.A. Carbon, 77-88. (Precipitation, runoff, groundwater discharge, and evaporation in the Swan coastal plain).

Bureau of Meteorology. (1975). List of publications. Australian Bureau of Meteorology, 62 p. (Complete list of all Bureau publications currently (1975) available).

Carbon, B.A. (ed.). (1975). Groundwater resources of the Swan coastal plain. Symposium, Murdoch University, 10-11 December, Published CSIRO, 1976, 231 p. (Symposium on the hydrogeology and water resources of the Swan Coastal Plain).

Chittleborough, R.G. (1975). Environmental factors affecting growth and survival of juvenile Western Rock Lobsters Panulirus longipes (Milne-Edwards). Australian Journal of Marine and Freshwater Research, 26, 177-196. (Includes seasonal mean temperatures and salinities from Western Australian Marine Research Laboratory at Waterman, for 1970-1973 (p. 179)).

Morgan, G.R., & E.H. Barker. (1975). The Western Rock Lobster fishery 1973-1974. Western Australian Department of Fisheries and Wildlife Report, 19, 22 p. (Includes summary of bottom temperatures for water shallower than 35 m at Fremantle, Lancelin, Jurien and Dongara, in 1973-74).

Penn, J.W. (1975). The influence of tidal cycles on the distribution pathway of Penaeus latisulcatus Kishinouye in Shark Bay, Western Australia. Australian Journal of Marine and Freshwater Research, 26, 93-102. (Study of tidal currents in Shark Bay in 1969).

Phillips, B.F. (1975). The effect of water currents and the intensity of moonlight on catches of the puerulus larval stage of the western rock lobster. CSIRO Australia Division of Fisheries and Oceanography Report, 63, 10 p. (Estimates of flow volumes at Seven Mile Beach (Dongara) from nearshore current measurements in spring 1972 and 1974).

Robins, J.P. (1975). Tuna survey in waters off the Western Australian coast during the period August 1973 to August 1974. Western Australian Department of Fisheries and Wildlife Report, 18, 85 p. (Includes surface temperature and salinity data, and bathythermograph traces, off the southwest and northwest coasts).

Walker, D.R., & S.C. Allen. (1975). Perth sea breeze project 1966 : data. Australian Bureau of Meteorology, Meteorological Summary, 17, 33 p. (Tracking of balloons at Rottnest, Cottesloe, University and Guildford to study Perth's sea-breeze in December 1966; contains wind profiles to 1500 m).

Chittleborough, R.G. (1976). Breeding of Panulirus longipes cygnus George under natural and controlled conditions. Australian Journal of Marine and Freshwater Research, 27, 499-516. (Includes sea temperatures in Cockburn Sound, for spring periods 1960-1975).

Morgan, G.R., & E.H. Barker. (1976). The Western Rock Lobster fishery 1971-1972. Western Australian Department of Fisheries and Wildlife Report, 22, 22 p. (Includes summary of bottom temperatures for water shallower than 35 m at Fremantle, Jurien and Dongara, in 1971-72).

United States Navy. (1976). Marine climatic atlas of the world. III. Indian Ocean. United States Navy, NAVAER 50-1C-530, 17 p + 267 charts. (Includes monthly mean surface winds, gales, precipitation, dry bulb and wet bulb, atmospheric pressure, for Indian Ocean to 180°E and to 55°S).

Beer, T., & J.D. Penrose. (1977). Summer dynamics of the Moore River system. Western Australian Institute of Technology, Department of Physics Report, PD/141/1977/ES13, 34 p. (Examines dynamics of the Moore River estuary, including density structure, stability, entrainment, flow, groundwater influx, during February 1977).

Morgan, G.R., & E.H. Barker. (1977). The Western Rock Lobster fishery 1974-1975. Western Australian Department of Fisheries and Wildlife Report, 28, 20 p. (Includes summary of bottom temperatures and surface salinities for water shallower than 35 m at Fremantle, Lancelin, Jurien and Dongara in 1974-75).

Rochford, D.J. (1977). Monitoring of coastal sea temperatures around Australia. Search, 8, 167-169. (Coastal temperature monitoring network described, including Geraldton - no data in this paper).

Tranter, D.J. (1977). Further studies of plankton ecosystems in the eastern Indian Ocean. I. Introduction - the study and study area. Australian Journal of Marine and Freshwater Research, 28, 529-539. (Includes brief review of upper-layer water masses and circulation in eastern Indian Ocean).

Part 2. Meteorology etc. 1978-79

Hodgkin, E.P., & K. Majer. (1978). An index to ecological information on estuaries and marine embayments in Western Australia. CSIRO Australia Division of Fisheries and Oceanography Report, 70, 2nd (revised) edition. (Comprising 487 references to oceanography, biology, geology, history; also list of research projects and data acquisition).

Paul, M.J., & J.D. Searle. (1978). Shoreline movements Geographe Bay Western Australia. 4th Australian Conference on Coastal and Ocean Engineering, Adelaide, 8-10 November. (Sediment movements and beach changes in Geographe Bay).

Searle, J.D., & B.W. Logan. (1978). A report on sedimentation in Geographe Bay. University of Western Australia, Department of Geology, report to Public Works Department, 47 p. (Includes bathymetry, winds, waves and swell, and currents of Geographe Bay/Cape Naturaliste area).

Streten, N.A. (1978). Satellite observed cloud cover in relation to sea surface temperature patterns in the Western Australian region. Australian Meteorological Magazine, 26(1), 1-17. (Study of sea surface temperatures from merchant ships and drifting buoys in May-July 1975, area coast to 110°E, 30 to 35°S, and relation with cloud patterns)

Wilson, B.R., & L.M. Marsh. (1978). Coral reef communities at the Houtman Abrolhos, Western Australia, in a zone of biogeographic overlap. International Symposium on Marine Biogeography and Evolution in the Southern Hemisphere, Auckland, 16 p. (Includes brief discussion on temperatures and currents associated with the Leeuwin Current).

Beer, T., & R. Black. (1979). Water exchange in Peel Inlet, Western Australia. Australian Journal of Marine and Freshwater Research, 30, 135-141. (Mathematical study of tidal transport into Peel Inlet; compared with current drogue tracks).

Brodie-Hall, L.C. (compiler). (1979). Applied physical oceanography - a preliminary study into Western Australia's needs and future research programmes. Report by Western Australian State Committee of CSIRO, 49 p. (Proposal for Western Australian coastal studies; especially North West shelf, and Geraldton to Cape Naturaliste; includes contribution on SW shelf by M.J. Paul).

Cambridge, M.L. (1979). Cockburn Sound Environmental Study: Technical report on seagrass. Western Australian Department of Conservation and Environment Report, 7, 100 p. (Includes brief review of temperature, salinity, and circulation in Cockburn Sound).

Chiffings, A.W. (1979). Cockburn Sound study: Technical report on nutrient enrichment and phytoplankton. Western Australian Department of Conservation and Environment Report, 3, 65 p + figs. (Includes brief review of hydrology and circulation in Cockburn Sound, and relation to nutrients).

Department of Conservation and Environment. (1979). Cockburn Sound environmental study 1976-1979. Western Australian Department of Conservation and Environment Report, 2, 103 p. (Includes summary of Steedman's wind-driven circulation model, and current measurements).

Gentilli, J. (1979). Epitropical westerly jet advected storms. Queensland Geographical Journal, 3rd series, 5, 1-20. (Rainfall and storms in western Australia, and relation to sea temperatures).

Hodgkin, E.P., C.C. Sandars, & N.F. Stanley. (1979). Lakes, rivers and estuaries. In: Environment and Science, University of Western Australia Press, ed. B.J. O'Brien, 100-145. (Discusses rivers and estuaries of southwest Australia, including the Swan).

Morgan, G.R., & E.H. Barker. (1979). The Western Rock Lobster fishery 1975-1976. Western Australian Department of Fisheries and Wildlife Report, 33, 20 p. (Includes summary of bottom temperatures and surface salinities for water shallower than 35 m, at Fremantle, Lancelin, Jurien and Dongara in 1975-76).

O'Brien, B.J. (ed.). (1979). Environment and Science. University of Western Australia Press, 150th Anniversary, 314 p. (Includes chapters on lakes, rivers and estuaries (see Hodgkin, Sandars & Stanley); Sea (Wilson, Hancock and Chittleborough) Atmosphere (Southern)).

Paul, M.J. (1979). A statement of the Public Work Department's present involvement in physical oceanography and an opinion on the needs for further oceanographic research to be carried out along the Western Australian coastline between Geraldton and Cape Naturaliste. In: "Applied physical oceanography - a preliminary study into Western Australia's needs and future research programmes", compiled L. Brodie-Hall, CSIRO State Committee, 6 p. (Reviews PWD activities in bathymetry, sealevels, currents, waves, storm surges, geomorphology and sedimentology, and proposal for more work).

Prescott, J.R.V. (1979). Australia's continental shelf. Nelson, Melbourne, 198 p. (Mainly discussion on marine resources; includes bibliography and detailed list of available maps).

Searle, J.D., & B.W. Logan. (1979). Sedimentation in the northern approaches to Fremantle. University of Western Australia, Department of Geology, report to Public Works Department, 24 p. (Sediment movements north of Fremantle, due to swell action and surf currents).

Southern, R.L. (1979). The atmosphere. In: Environment and Science, University of Western Australia Press, ed. B.J. O'Brien, 183-226. (Good summary of pressure and wind systems, cyclones, rainfall in Western Australia).

Part 2. Meteorology etc. 1979-81

Steedman, R.K., & Associates. (1979). Environmental implications Bunbury air quality. Confidential contract report to Russell Taylor and William Burrell, 24 p. (Air movements over Bunbury for atmospheric pollution estimates).

Wilson, B.R., D.A. Hancock, & R.G. Chittleborough. (1979). The sea. In: Environment and Science, University of Western Australia Press, ed. B.J. O'Brien, 146-182. (Includes shelf and coastal geology, biology, circulation; very brief review).

Bureau of Meteorology. (1980). The climate and meteorology of Western Australia. Australian Bureau of Meteorology; in Western Australian Year Book, 47-62. (Summary of climate and weather, with rainfall, air temperature, storms at selected stations; and climate data for Perth; tables and charts).

Hodgkin, E.P., P.B. Birch, R.E. Black, & R.B. Humphries. (1980). The Peel-Harvey estuarine system study (1976-1980). Western Australia Department of Conservation and Environment Report, 9, 72 p. (Includes rainfall, streamflow, flushing and salinity of the estuary).

Johannes, R.E. (1980). The ecological significance of the submarine discharge of groundwater. Marine Ecology Progress Series, 3, 365-373. (Contribution of nutrients to coastal water by groundwater, including Perth northern area).

Rimmer, D.W. (1980). Spatial and temporal distribution of early-stage *Phyllosoma* of Western Rock Lobster, *Panulirus cygnus*. Australian Journal of Marine and Freshwater Research, 31, 485-497. (Includes sea temperatures at Rottnest and Jurien Bay, for spring and summer).

Rye, P. (1980). Weather forecasting and weather workbook. Western Australian Institute of Technology, Department of Physics, lecture notes, 271 p. (Simple presentation of weather patterns, especially west coast).

Taylor, R., & W. Burrell. (1980). Bunbury region plan, June 1980. Confidential contract report to State Planning and Coordinating Authority, and Bunbury and Districts Regional Planning Committee, 145 p + figs. (Includes analysis of three years winds at Bunbury power station).

Binnie & Partners, Pty. (Ltd.) (1981). LaPorte effluent disposal schemes. Submarine pipeline study. Phase 1A; review of options. Confidential contract report with G.B. Hill & Partners, to W.A. Public Works Department. (Includes study of temperature, salinity, and wind-driven currents near Bunbury, in connection with effluent dispersion).

Black, R.E., R.J. Lukatelich, A.J. McComb, & J.E. Rosher. (1981). Exchange of water, salt, nutrients and phytoplankton between Peel Inlet, Western Australia, and the Indian Ocean. Australian Journal of Marine and Freshwater Research, 32, 709-20. (Measurements of temperature, salinity, currents and sealevel (inter alia) in the Peel Inlet and adjacent coastal waters).

Chiffings, A.W., & A.J. McComb. (1981). Boundaries in phytoplankton populations. Proceedings of the Ecological Society of Australia, 11, 27-38. (Includes brief discussion of circulation in the Sound using Steedman's model, and relation to phytoplankton and nutrients).

Marsh, L.M. (1981). Bibliography of Shark Bay. Unpublished manuscript, 7 p. (104 references on all aspects of marine science and fisheries relating to Shark Bay).

Olsen, G. (1981). Wind comparison: Sorrento Beach vs. Fremantle Port Authority. Unpublished note, Coastal Dynamics Group, CSIRO Australia Division of Land Resources Management, 6 p. (Preliminary note on the relationship between beach winds at Sorrento, and Fremantle Port Authority, in January/February 1981).

Olsen, G., & C. Edwards. (1981). Observations on the relationship between longshore current and wind speed and direction, Sorrento Beach, 1981. Unpublished manuscript, Coastal Dynamics Group, CSIRO Australia Division of Land Resources Management, 10 p. (Preliminary note on the relationship between Fremantle winds and longshore current in surf zone at Sorrento beach in 1981).

Penrose, J.D., & T. Beer. (1981). Acoustic reflection from estuarine pycnoclines. Estuarine, Coastal and Shelf Science, 12, 237-249. (Density and acoustic studies in Moore River estuary).

Public Works Department of Western Australia. (1981). Geographe Bay fishing boat harbour investigations. Public Works Department of Western Australia, Engineering Division, Harbours and Rivers Branch, Report, CIS 81/1, 48 p. (Investigation of proposed harbour at Geographe Bay; study of wave climate).

Smith, S.V. (1981). The Houtman-Abrolhos Islands: carbon metabolism of coral reefs at high latitude. Limnology and Oceanography, 26(4) 612-621. (Includes mean monthly radiation at Geraldton and sea temperature at Rat Island, over 10 year period).

Bureau of Meteorology. (monthly). Monthly weather review, Western Australia. Australian Bureau of Meteorology, monthly journal. (Review of weather events, tables and maps of rainfall, air temperature, sunshine, etc; details for Perth; daily synoptic pressure charts).

CSIRO
Marine Laboratories

comprise

Division of Fisheries Research
Division of Oceanography
Central Services Group

HEADQUARTERS

202 Nicholson Parade, Cronulla, NSW
P.O. Box 21, Cronulla, NSW 2230, Australia

QUEENSLAND LABORATORY

233 Middle Street, Cleveland, Qld
P.O. Box 120, Cleveland, Qld 4163

WESTERN AUSTRALIAN LABORATORY

Leach Street, Marmion, WA
P.O. Box 20, North Beach, WA 6020