COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION # **DIVISION of FISHERIES and OCEANOGRAPHY** # Report No. 97 CHANGES IN SIZE COMPOSITION, INDICATIVE OF STOCK CONDITIONS IN THE NEW SOUTH WALES TRAWL FISHERY, FROM 1945/46 TO 1966/67 By Maurice Blackburn Reprint No. 1016 Marine Laboratory Cronulla, Sydney 1978 ISBN 0 643 02198 1 Printed by CSIRO, Melbourne # CONTENTS | Abstract | | |------------------|-----| | Introduction | 2 | | Methods | 3 | | Tiger Flathead | . 3 | | Morwong | 7 | | Redfish | . 9 | | Discussion | 11 | | Acknowledgements | 12 | | References | 13 | CHANGES IN SIZE COMPOSITION, INDICATIVE OF STOCK CONDITIONS IN THE NEW SOUTH WALES TRAWL FISHERY, FROM 1945/46 TO 1966/67 # ABS TRACT Over a million measurements of the principal species in the New South Wales demersal net ("trawl") fishery, namely tiger flathead, morwong and redfish, were made over a 22-year period. Temporal changes in size-composition of the catch of those species are shown by the measurements. The principal changes indicate differences in fishing mortality and show the expected relations to changes in intensity of fishing. Stocks of the three species improved after the period of most intense fishing which occurred from about 1948 to 1958, by better representation of large fish and greater abundance by weight of all fish. The recovery was only partial for tiger flathead, for which the fishing intensity declined much less than for the other species. It is attributed to a regulation which had the effect of increasing net mesh size. Comparison of size-composition data is shown to be useful in assessing changes in the stocks, by giving information not available from catch and effort records. #### INTRODUCTION Demersal net or "trawl" fisheries off New South Wales began from steam otter trawlers in 1915. Danish seiners appeared in 1937 and became significant about 1941. The steam trawlers fished mostly along the outer part of the continental shelf from Crowdy Head (New South Wales) to Babel Island (Tasmania), and landed all catches in Sydney. The Danish seiners operated along the shelf from Crowdy Head to Gabo Island (Victoria), in areas of less average depth than those fished by trawlers. Their catches were landed at various New South Wales ports but much of the fish was sold in Sydney. The following papers give a history of these fisheries up to 1953/54, with special reference to changes in abundance of the principal species: Colefax (1934), Fairbridge (1948, 1952) and Houston (1955). The species discussed were tiger flathead (Neoplatycephalus richardsoni , previously known as N. macrodon), morwong or jackass fish (Nemadactylus macropterus) and redfish or nannygai (Centroberyx affinis), especially tiger flathead. Further biological information on tiger flathead was given by Colefax (1938), Dakin (1939) and Fairbridge (1951). Some biological information on morwong exists in unpublished form (Han, MS). In 1941 the CSIR Division of Fisheries established a research programme on species taken in the demersal net fishery of New South Wales. Special attention was given to tiger flathead, which was then the principal species caught. Regular large-scale measuring of random samples at the Sydney fish market was an important part of the programme, especially after the war. It was facilitated by the New South Wales Fisheries Department, which had no research organisation of its own and wanted to support the CSIR programme. The Department made Mr John Woore available to measure fish of demersal and other species in the market and give them to CSIR. Mr Woore's work began in 1941 but was very soon suspended because of the war. He resumed his measuring duties in 1945 and continued them until he retired in 1967. The measuring programme was then discontinued. The length frequency distributions from the market measuring gave useful information on the life history of tiger flathead and temporal changes in the flathead stock. Some of it was published by Fairbridge (1948, 1951, 1952) and Houston (1955). No use has been made of tiger flathead measurements since 1953/54, however, or of any measurements of morwong and redfish. The purpose of this paper is to present all the measurements of those three species from 1945/46 to 1966/67 that could have scientific value, and to interpret temporal changes in size-composition of the samples. Other investigators may find additional uses for the data. Over one million measurements are available, approximately 601,000 for tiger flathead, 285,000 for morwong and 214,000 for redfish. They were distributed fairly evenly over the 22-year period, and all were made by the same person in the same way. Fairbridge (1951) gave reasons for considering the tiger flathead from all localities mentioned above as a single population. He also found that differences in size-composition and growth rate were small between those localities. In any case it is necessary to combine market measurements from all localities, because all samples from steam trawlers and many samples from Danish seiners were not identifiable by locality. An exception is made for the Danish seine fishery at Lakes Entrance, Victoria, which began in 1947. CSIRO investigators collected data there between 1953 and 1956 to see if the tiger flathead were part of the New South Wales stock. The results have not been analysed but it is hoped they soon will be. Samples of Lakes Entrance flathead that were sent to the Sydney market and measured there are neglected in this study. Nothing is known about the number and range of populations of morwong and redfish in the area of the New South Wales fishery. Samples from all localities except Lakes Entrance have been combined from necessity, as with tiger flathead. Lakes Entrance samples are ignored. Samples trawled in the Great Australian Bight and sent to Sydney market are excluded. #### METHODS All measurements were made to the nearest cm; for example fish from 32.5 to 33.4 cm inclusive were recorded as 33 cm. Measurements of tiger flathead are total lengths. Those of morwong and redfish are lengths to caudal fin fork. For tiger flathead the measurer strove to make 4,000 measurements from randomly chosen samples each month, although he rarely reached that total. Monthly numbers of measurements for morwong and redfish were usually lower. Measurements from steam trawler samples were separated from those of other samples. The other samples were from Danish seiners or small motor trawlers. The small motor trawlers began to appear in the fishery about 1954. The measurements given here are grouped by type of boat (steam trawler or other) and by quarter-year, commencing July-September 1945. Measuring of morwong and redfish did not start until 1947/48. Fairbridge (1948, 1952) discussed some tiger flathead measurements obtained from various sources in 1937/38, 1938/39, 1941/42 and 1944/45, but only for part of the year in each case. They are ignored here because it is shown later that size-composition of flathead can vary with time of year, and also the type of boat was not always known. About 7,000 flathead measurements for 1945/46 are also disregarded because the type of boat was unknown. The fleet of steam trawlers began to decline about 1951 and disappeared in 1961. As a result, measurements of steam trawled tiger flathead after 1954/55 appear too scanty to be useful and are not given here. The same applies to steam trawled samples of morwong after 1957/58 and redfish after 1958/59. # TIGER FLATHEAD Table A gives the length frequencies from steam trawler and other boat samples for the years 1945/46 through 1954/55. Table B gives them for the other boats for the following 12 years. These tables appear at the end of the paper. The smallest flathead measured was 20 cm and the largest 64 cm. The largest on record was 67 cm, measured about 1930 (Fairbridge 1952). The legal minimum size in New South Wales is 33 cm (13 inches). The principal mode in length frequency distributions for large samples generally occurs at 32, 33 or 34 cm (Tables A and B). Thus recruitment of juveniles to the fishable stock is probably almost complete at the legal minimum size, and changes in size-composition of legal-sized fish may validly be compared. Table 1 shows for steam trawled samples in each year the total number measured, the number and percentage at legal size, and the percentage of the legal-sized in successive 5-cm groups. The same information for samples from the other boats appears in Table 2. The percentage below legal size varies with year and is often quite high. These changes probably reflect the rigour with which the regulations were obeyed and enforced, rather than changes in the stock. The size-composition of the legal-sized fish is variable between and within the two types of boat samples, and the annual changes within each type probably have biological significance. It is likely that they denote changes in mortality, resulting in higher or lower survival to the larger sizes and ages. According to Fairbridge (1951) the mean ages of tiger flathead at 35 and 55 cm for example are about three and six years respectively; according to Houston (1955) they are about four and seven years. Before further considering Tables 1 and 2 it is desirable to investigate variation in size-composition by time of year. Tables 3 and 4 show the quarteryear totals of legal-sized flathead dissected by percentages in the same groups as in Tables 1 and 2. The percentage in the 33-37cm group is generally the highest. Comparison of percentages in that group for quarter-years shows trends as follows in the majority of years. For 7 of the 10 years of steam trawler samples the percentage at 33-37 cm was maximal in July-September. In those years the same percentage was minimal in April-June (1 year), January-March (5 years) and October-December (1 year). For 13 of the 22 years of samples from other boats the percentage was again highest in July-September. It
was lowest in those years in April-June (6 years), January-March (5 years) and October-December (2 years). Another case in Table 4 (1950/51)isnotvery different: the percentage is slightly higher in the last quarter than the first, and lowest in the second quarter. This all suggests a tendency for fish over 37 cm to be relatively scarce in July-September each year and more abundant later in the year. Sometimes this abundance increases throughout the latter part of the year (percentage at 33-37 cm minimal in April-June) and sometimes it declines again. This pattern is consistent with the following findings of Colefax (1938) and Fairbridge (1951) about the biology of tiger flathead. Spawning occurs from October to April and the fish become concentrated and more vulnerable to fishing at spawning times. Most males over 30 cm and females over 35 cm are sexually mature in the spawning season. Thus the fishermen's opportunities for catching the larger fish are relatively low in July-September, relatively high in October-April, and relatively low again in May-June. In May-June the larger fish would be scarcer because of the previous months' fishing, and the survivors of them would be more dispersed, than in October-April. All this is consistent with the trend by quarter-years noted above, except that the relative abundance of larger fish did not always decline in the last quarter in the measured samples. It did not do so in the samples of Table 4 for the years 1945/46 to 1947/48, 1960/61 to 1962/63, 1965/66 and 1966/67. It also did not do so in the samples of Table 3 for 1946/47, probably not in 1945/46, and probably not very much in 1947/48. One possible explanation is that there was little sampling after April in those years, but the original records do not show that. Another explanation, discussed later, is that a greater proportion than usual of the fish over 37 cm survived the fishing in the earlier part of each year. It is clear anyway that size-composition of the sampled catch can vary considerably between quarters of the year. Therefore changes in size-composition between years should be studied from data for entire years as in Tables1 and 2. Another reason for utilising material of the combined seasons is to give fairly equal weighting to each area of the fishery. The spawning season is earlier in northern areas than southern, and the season of best fishing varies with area in a broadly similar way (Fairbridge 1951). From Tables 1 and 2, it is seen that steam trawler samples contained relatively more large fish than the other samples did in every year. Fairbridge (1951, 1952) and Houston (1955) discussed this difference but the reasons for it are not exactly known. It is necessary to consider the two types of samples separately. The size-composition for 1945/46 is discussed later. The steam trawler samples for the other years fall into two groups on the basis of percentage of legal-sized over 37 cm, namely the first three years and the following six years (Table 1). In the samples from other boats after 1945/46 three groups of years can be distinguished, the same two as above and a third group of twelve years (Table 2). Table 5 summarises the differences. Tables 1 and 2 show that the percentages of legal-sized always declined from the 38-42 cm group to the 58-62 cm group. In most years they declined from the 33-37 cm group as well. They indicate mortality from age-group to age-group, but cannot measure it because the age-composition of the samples is not known. As mentioned earlier at least three age-groups are represented in the legal-sized, commencing with age three or four. In view of the evidence of over-fishing of tiger flathead presented by Fairbridge (1948, 1952) and Houston (1955), it is likely that the changes in mortality between years largely represent changes in fishing mortality. These changes, roughly identified from the percentage of legal-sized at over 37 cm, are now discussed. The lowest mortalities indicated in Tables 1 and 2 are for the years 1946/47 to 1948/49. There were also more large fish surviving at the end of each of those years than there were in later years (Tables 3 and 4). Fairbridge (1948, 1952) considered that the tiger flathead stock had then been partially restored as a result of the wartime reduction in fishing effort, which is shown later in Table 6. Data on size-composition of the catch from before and during the war are not really comparable with those of post-war years as already mentioned. They do however indicate some increase in proportion of larger fish from 1941 to 1946 (Fairbridge 1948). Size data from the best years of the fishery (about 1930) are even less satisfactory, but show that large fish were more abundant then than has ever been recorded since (Colefax 1934). The size data for 1945/46 suggest a higher mortality than in the next three years, especially for steam trawled fish, but lower than in any other year for which data are given (Tables 1, 2 and 5). Fairbridge (1948, 1952) noted this with surprise, expecting that the benefits of the wartime reduction in fishing would have been more apparent in 1945/46. It is however, almost certain that the data for that year in Tables 1 and 2 show too few large fish. According to Tables 3 and 4 the samples of the April-June quarter had high percentages of legal-sized flathead at over 37 cm for both kinds of boats, but relatively few fish were measured in that quarter. The mortality in 1945/46 was probably closer to that of the next three years than Tables 1, 2 and 5 indicate. Houston (1955) suggested that the boats, especially steam trawlers, were relatively inefficient at catching large fish when they returned after the war. For the six years commencing 1949/50 the annual mortality of the tiger flathead was much higher than in the previous three years. It fell slightly in the following twelve years (Tables 1, 2 and 5). As noted earlier there were several years during that 12-year period in which large fish remained abundant in the April-June quarter, although not to the same extent as in 1946/47 to 1948/49. It seems clear that fish over 37 cm were particularly scarce from about 1949/50 to 1954/55, forcing the boats to catch more of the small flathead. During the first three years of that period the percentage of fish in the catch below legal size was very high for both kinds of boats (Tables 1 and 2). Fairbridge (1952) and Houston (1955) summarised the catch and effort history of the fishery for tiger flathead up to 1953/54. It is of interest to update that record to 1966/67, to see how it agrees with the observed changes in mortality. Table 6 gives Houston's data (in a modified form for effort) for years commencing 1938/39, followed by data of the same kind which were obtained from published annual reports of the New South Wales Fisheries Department. The years 1928 and 1934 are included to exemplify conditions in the best years of the fishery. The catch as given in the Fisheries Department report for 1975/76 (the latest available at this writing) is included for interest, but the effort data in that report seem not to be comparable with those in Table 6. Fairbridge and Houston used the trawler-ton as a unit of fishing effort with each Danish seiner given a value of 30 trawler-tons. The tonnages of steam trawlers ranged from 200 to 324 (Fairbridge, unpublished). Any attempt to relate fishing power of the other boats to that of steam trawlers must however allow for the fact that the other boats catch some species more efficiently than others, as is shown later. For tiger flathead, by taking values from the second last and third last columns of Table 6 and averaging the annual ratios (omitting years with one steam trawler or less), it is found that a steam trawler caught on average about as much as 7 other boats. On that basis the total fishing effort each year can be estimated in vessel units as shown in Table 6. The other boats were Danish seiners and small motor trawlers, which appeared first in 1937 and 1954/55 respectively. Catches by the other boats before 1942/43 are unknown. Records of catches of "sand flathead" have been assumed to refer to tiger flathead in the case of steam trawlers, but not in the case of other boats. From Table 6, the annual catch per steam trawler fell to about 25 per cent of the best recorded rate (that of 1928) in 1941/42. This probably reflected the rather intense fishing just before the war. Fishing effort was reduced during the war, especially in 1942/43 and 1943/44. There was an increase in catch per trawler during those years and an increase in catch per other boat from 1942/43 to 1944/45. It is curious that the catch per trawler did not also continue to rise until 1944/45, and perhaps those vessels were inefficient at the end of the war as suggested by Houston (1955). By the period 1946/47 to 1948/49 the fishing effort (vessel units) was higher and the catch per vessel unit lower than at any previous time. From 1949/50 the number of vessel units generally went on rising until about 1963/64, although the steam trawlers had all disappeared by 1961/62. The catch per vessel unit (as recorded) continued to fall until about 1960/61, after which it rose slightly. There is, however, a major difficulty about the effort data after about 1950. From that time onwards many Danish seiners and small motor trawlers devoted substantial and increasing amounts of time to activities not connected with demersal fish, namely trawling for prawns and hook fishing for tuna. Also some of the Danish seiners spent part of their time in the demersal fishery at Lakes Entrance, Victoria. In addition there were changes in the mesh size of nets as mentioned later. Thus in Table 6 the numbers of vessel units and catches per unit after 1950 are not comparable with the earlier figures. This is where the size-composition data have value as indicators of changes in fishing intensity. For instance, it is not possible
to say from Table 6 when the fishing intensity was maximal, but Tables 1, 2 and 5 show that it probably was between 1949/50 and 1954/55. Since the differences in size-composition between that period and the following 12-year period are small, the intensity might have remained maximal a little later than 1954/55. The best indication of the time of minimum abundance of flathead comes from the catches per steam trawler, which indicate greatest scarcity in 1957/58 and 1958/59. There is no reason to doubt the indications in Table 6 of a subsequent improvement in the flathead stock during the 1960's which is also shown by the size data. The main difficulty is to make an assessment of how much the stock had recovered by 1966/67, since it was almost certainly more than that indicated in Table 6. Tables 2 and 5 show the mortality still much higher in the mid-1960's than in the period 1946/47 to 1948/49, when the mean catch per vessel unit was about 25,000 lb. The corresponding catch per unit effort in the mid-1960's was probably lower than that but more than the 15,000 lb shown in Table 6. Assuming it was about 20,000 lb, the abundance of tiger flathead in the mid-1960's was about 15 percent of the best levels recorded (1928) and about 35 percent of the fairly good levels before and just after the war. The most interesting thing is that a modest recovery, the first since the war, did occur after the late 1950's. What caused the recovery? One explanation is that the number of comparable vessel units declined. As shown above, it is impossible to affirm or deny this from the data of Table 6. If the number did decline the reduction was probably not great. Another explanation is that a change in mesh size permitted more small fish to escape and so reduced the fishing mortality. According to annual reports of the New South Wales Fisheries Department, the minimum mesh size of codends was legally fixed at about one 4-inch more than the size previously used, in January 1956. This followed a recommendation by the CSIRO Division of Fisheries which was based on tests made by Houston (1955). Several Danish seiners evaded the regulation, and in January 1961 the Fisheries Department made it more effective by making the new mesh size applicable to all parts of nets. The regulation seems to have had value in reducing the proportion of undersized fish (less than 33 cm) caught. Table 2 shows that the percentage at and over 33 cm rose slightly in 1955/56, and more in later years. As noted earlier an improvement in the size-composition within the legal-sized part of the stock began about 1955/56 and has persisted (Tables 2, 4 and 5). It could have resulted from the better protection given to the undersized fish, and it could have caused a rise in the catch per vessel unit as was observed. It seems more reasonable to ascribe the partial stock recovery to change in mesh size than to reduction in vessel units, unless evidence of actual reduction in the units can be produced. In any case the mesh change should have had some beneficial effect. ## MORWONG Table C gives the length frequencies from steam trawler and other boat samples for the years 1947/48 through 1957/58. Table D gives them for the other boats for the following nine years. These tables appear at the end of the paper. The smallest and largest morwong measured were 15 and 48 cm. The legal minimum size in New South Wales is 11 inches total length, equivalent to 23.5 cm length to caudal fork (Han, MS). Tables C and D show that percentages of fish measuring 23 cm or less are negligible in large samples. They also show that the principal mode in length frequency distributions generally occurs at 30, 31 or 32 cm. Thus recruitment of juveniles to the fishable stock is probably complete at 33 cm, and changes in size-composition of samples of fish measuring 33 cm and more may validly be compared. Table 7 shows for steam trawled samples in each year the total number measured, the number and percentage at 33 cm or over, and the percentages of those in successive 5-cm groups. The same information is given for samples from the other boats in Table 8. Fish below 33 cm predominate in both sets of samples. There are fairly consistent small differences in percentage size-composition between samples from the two kinds of boats, which are therefore considered separately. The steam trawlers caught slightly more fish under 33 cm and slightly less at 33-37 cm, than did the other boats. Large samples of morwong were not always available for each quarter of a year, as shown in Tables C and D. For years in which they were available for all quarters, tables corresponding to Tables 3 and 4 were prepared to investigate possible variation in size-composition by quarter-year. No consistent pattern of variation was detectable, so the tables are not given here. It is assumed that seasonally uneven sampling did not affect the major differences in size-composition between years as shown in Tables 7 and 8. The changes in size-composition of the samples at and over $33 \, \mathrm{cm}$ probably indicate mortality from age-group to age-group. According to Han (MS) the mean ages of morwong at $34 \, \mathrm{and} \, 42 \, \mathrm{cm}$ for example are about five and nine years. The highest mortalities seem to have occurred from $1947/48 \, \mathrm{to} \, 1949/50$ (Tables 7 and 8) and the lowest from $1958/59 \, \mathrm{to} \, 1963/64$ (Table 8). Table 8 suggests a low mortality also in 1953/54, but the sample for that year is small. Elsewhere in each table the differences in size-composition are minor. Table 9 summarises the catch and effort history of the fishery for morwong in the same way as Table 6 for tiger flathead, utilising the same sources of data. There is no catch information prior to 1942/43, although it is known that morwong were caught. According to Fairbridge (1952) morwong were often discarded by the fishermen in years when flathead were plentiful. Numbers of steam trawlers and other boats are the same in Table 9 as in Table 6, but the estimation of vessel units is different. The mean ratio for morwong of catch per steam trawler: catch per other boat, obtained in the same way as for tiger flathead, is 33:1. It is well known that the other boats were much less successful in catching morwong than tiger flathead, whereas the steam trawlers were good at catching both. Vessel units in Table 9 are counted at 33 per trawler and one per other boat. According to Table 9 the morwong catches per boat or vessel unit were low during the last three war years, probably because the reduced fleet was doing well with tiger flathead. Abundance of morwong was high in 1945/46 and 1946/47, no doubt because the stock or stocks had been well rested during the war. The contemporaneous decline in abundance of flathead (Table 6) encouraged fishermen to catch morwong. Beginning in 1947/48 the abundance of morwong (as measured by catch per boat or vessel unit) gradually declined, simultaneously with an increase in fishing effort, until 1953/54. From about 1955/56 it began to regain the immediate post-war level, and from about 1961/62 onwards it was higher than ever before. For reasons discussed under tiger flathead, relating to other kinds of fishing activity pursued by the other boats, the high catches per vessel unit in the last few years of Table 9 are probably too low. There was certainly a very considerable recovery in the stock or stocks of morwong in the late 1950's and 1960's. Close agreement should not be expected between the mortality changes in Tables 7 and 8 and the changes in abundance in Table 9. The former ignore the large part of the stock that measures under 33 cm. Also there was no significant measuring during the two years of high abundance just after the war. However the years of highest mortality fall in the period of intense fishing and declining abundance as expected, and the years of lowest mortality fall in the period of final recovery. The latter would be expected if the recovery was associated with decreased fishing intensity, and it is quite clear that it was. The number of vessel units began to decline in 1955/56 and later fell much further, a consequence of the winding down of steam trawling operations. The effort after 1957/58 was lower than at any time since the war years. There can be no doubt that the large reduction in effort resulted in better survival of fish and hence an increase in their abundance on a weight basis. It also increased the apparent abundance by leaving fewer effort units to divide the fish available. The increase in mesh size mentioned earlier, which was to $3\frac{1}{4}$ inches for Danish seiners, probably had very little effect on the morwong catch. The body depth of morwong is about 35 percent of its length to caudal fork. A morwong 23 cm long, about 8 cm deep, might barely escape through a $3\frac{1}{4}$ -inch mesh, but few fish in the commercial catch are as small as 23 cm (Tables C and D). Percentages of fish at and over 33 cm were not consistently higher after the mesh change than before (Table 8). ## REDFISH Length frequencies from steam trawler and other boat samples are given in Table E for the years 1947/48 through 1958/59. Table F shows them for the other boats for the following eight years. These tables are at the end of the paper. The smallest and largest redfish measured were 12 and 37 cm. There is no legal minimum size. Tables E and F show that the principal mode in length frequency distributions generally occurs at 22, 23 or 24 cm. Thus recruitment of juveniles to the fishable stock is probably complete at 24 cm, and changes in size-composition of samples of fish measuring 24 cm and over should be comparable. Tables 10 and 11 show for each year the total number of redfish measured, the number and percentage at 24 cm or over, and the percentage of those in successive 5-cm groups, for samples from steam trawlers and other boats. Data from other boats in 1947/48
are too scanty to be useful. In the years for which both kinds of samples are available the steam trawler catch had a higher mean percentage of fish at and over 24 cm than the catch of the other boats, although the percentages for individual years were very variable. The two sets of data are considered separately. Large samples were generally not available for each quarter of a year, as shown in Tables E and F. There were particularly few of them in the January- March quarter, which seems to reflect reduced availability or marketability of redfish at that season. Monthly total catches, listed in annual reports of the New South Wales Fisheries Department, were generally low in those months. For the few years for which large samples were available from all quarters (steam trawlers only), a table like Table 3 was drawn up to investigate possible variation in size-composition by quarter-years. No consistent pattern of variation was apparent and the data are not given here. It is assumed that the seasonally uneven sampling did not affect the major differences in size-composition between year as shown in Tables 10 and 11. The age-composition of the stock or stocks of redfish is unknown. Most length frequency distributions in Tables E and F are skewed in a way that suggests the existence of more than one age-group at sizes above the mode. Assuming such an age-composition, the changes in size-composition at and over 24 cm in Tables 10 and 11 probably indicate mortality from age-group to age-group. The highest mortalities are indicated by highest percentages in the third last column of Tables 10 and 11. Those from the trawler samples were in 1948/49 and 1949/50, and those from the other samples were in the same years and the next three. In Table 11 all mortalities after 1957/58 were lower than those of all previous years. The catch and effort history of the redfish fishery, as far as it can be established from the same sources of data as for flathead and morwong, is summarised in Table 12. There is no information on catch for years before 1942/43, although it is known that redfish were caught. Redfish have generally commanded a lower price than tiger flathead or morwong. For that reason they were seldom deliberately sought, and were sometimes discarded by the fishermen when flathead or morwong were plentiful. Numbers of steam trawlers and other boats in Table 12 are the same as in Tables 6 and 9, but the estimation of vessel units is again different. The mean redfish ratio of catch per steam trawler: catch per other boat, obtained as for flathead and morwong, is 82:1. The other boats were obviously very poor at catching redfish, for technical, climatic or economic reasons. The catch of redfish per steam trawler in Table 12 was fairly low during the last three war years, as it was for morwong. Presumably the small fleet concentrated upon tiger flathead. After the war the catch per trawler gradually rose, reaching a maximum in 1948/49 and 1959/60. Probably there were plenty of redfish available in all those years, but the trawlers did not fish them intensively until both flathead and morwong had declined in abundance. After 1949/50 the redfish catch per trawler gradually declined, although the effort did not increase further. The catch per other boat and per vessel unit changed in almost the same way. The catch per vessel unit never recovered to the highest levels, although the number of units fell considerably after the steam trawlers withdrew. The highest mortalities indicated in Tables 10 and 11 occurred at the period of greatest catches per boat, rather than later as for flathead and morwong. They were however contemporaneous with the highest annual amounts of fishing effort, and can reasonably be attributed to the fishery. Another feature in the comparison of size-composition with catch per boat (or unit) is more peculiar. Table 11 shows an improvement in size-composition after 1957/58 which can well be attributed to the reduced fishing effort. It should have resulted in a more abundant stock by weight on the grounds, but the catch per vessel unit remained the same at a very low level (Table 12). The explanation for the lack of increase in catch per unit is probably that the trawlers had disappeared and the other boats did not fully avail themselves of the improved abundance of redfish. They were never very good at catching that low-priced species, and were undoubtedly more interested in the stocks of morwong and flathead which were recovering at the same time. In addition some of them were increasingly engaged in fishing for prawns and tuna as mentioned earlier. Thus the size-composition data seem to give a more complete picture of temporal changes in the redfish stock than the data on catch per effort do, as was also the case with tiger flathead. Although the change in size-composition after 1957/58 was most probably the result of the contemporaneous decline in fishing effort, it was possibly affected by the change in mesh size as well. The redfish has a body depth about 40 percent of its length to caudal fork. Thus a redfish 20 cm long, about 8 cm deep, might just pass through a 3½-inch mesh. Fish of that length and under are a small but significant proportion of the catches (Tables E and F). Table 11 shows that the percentage of redfish at and over 24 cm increased after 1957/58. This is consistent with a reduced killing of small fish but could possibly be explained otherwise. # DISCUSSION Major differences have been observed between years in the size-composition of the fully recruited parts of the stocks of tiger flathead, morwong and redfish. The period was 1945/46 to 1966/67 for flathead and 1947/48 to 1966/67 for the other species. The differences are associated with groups of years rather than individual years, and appear to represent changes in mortality from age-group to age-group. The periods of presumed higher and lower mortality agree closely with periods at which fishing intensity (including effects of changes in mesh size) was relatively high and low for each species. Thus the principal changes in size-composition reflect changes in fishing mortality, although the actual mortality rates cannot be estimated from the data available. Minor changes in size-composition between individual years could represent vagaries of sampling or the passing of numerically different year-classes through the stocks. Specifically, fishing mortality of tiger flathead was relatively low from 1945/46 60 1948/49, then higher, and low again (but not as low as in the first period) from 1955/56 onwards. For morwong it was highest in 1947/48 to 1949/50 and then declined, being lowest about 1958/59 to 1963/64. For redfish it was highest in 1948/49 and 1949/50 and then fell, being lowest from 1957/58 onwards. Each of these periods of high mortality agrees closely with the period of most intense fishing (highest number of vessel units) for the species. Regarding the periods of lower mortality, the first one for tiger flathead represents a time of moderate fishing on a stock that had been little exploited for some years because of the war. Those for morwong and redfish follow a reduction in fishing effort due to the withdrawal of steam trawlers. The second one for tiger flathead represents either an effect of reduction in fishing effort or an increase in the mesh size of nets, with the latter more likely, or both. The increase in mesh size may also have contributed to the decline in mortality of redfish. Abundance of the species as measured by catch per boat or per vessel unit generally changed as expected, being lower when fishing intensity and mortality were high and higher when they were low. The only important exception was a failure of the catch of redfish per vessel unit to rise after the number of units fell. This can be attributed to poor fishing power and motivation as regards that species on the part of the smaller boats, which may however have changed after 1966/67. From that example and others mentioned, it is evident that catch per boat and per vessel unit became increasingly unreliable as measures of fish abundance during the period of study, because of changes in the way the smaller boats operated. In particular they spent more time in activities not concerned with demersal fish. It is known that other changes have occurred since 1966/67, especially the transfer of many boats from Danish seining to motor trawling. New measures of fishing effort, related quantitatively to the old, are probably needed. However, since changes in the size-composition of the catch generally parallel changes in the amount of effort and catch per unit of effort, the former could be a valuable source of data on temporal changes in the demersal net fishery. They could confirm the principal changes shown by the catch and effort information, and bridge deficiencies in that information. The market measuring programme should therefore be resumed if possible. Ideally, otoliths or scales should also be collected so that the length frequency distributions can be converted to frequency distributions of age, as Fairbridge (1951, 1952) and Houston (1955) did. It is shown that by 1966/67 the stocks of the three species had recovered to some extent from the results of the period of most intense fishing, which occurred from about 1948 to 1958. The recovery was large for morwong and redfish but only moderate for flathead. The total catches for 1975/76 in Tables 6, 9 and 12 suggest that conditions may still be about the same, but changes can eventually be expected from actions by government or industry. Monitoring of size-composition data should form part of the assessment of those changes. This paper shows types of size-compositions that indicate favourable and unfavourable stock conditions. ### ACKNOWLEDGEMENTS This work was done while the writer was a visiting scientist in the CSIRO Division of Fisheries and Oceanography. The writer is grateful for the
opportunity to update the results of the investigation of species in the demersal net fishery, with which he was associated at various times from 1941 to 1955. This is also an opportune time to record a tribute to all those, both in the New South Wales Fisheries Department and CSIRO, who co-operated in the project. #### REFERENCES - Colefax, A.N. (1934). A preliminary investigation of the natural history of the tiger flathead (Neoplatycephalus macrodon) on the south-eastern Australian coast. I. Distribution and supply; length statistics. Proc. Linn. Soc. N.S.W. 59, 71-91. - Colefax, A.N. (1938). A preliminary investigation of the natural history of the tiger flathead (Neoplatyecphalus macrodon) on the south-eastern Australian coast. II. Feeding habits; breading habits. Proc. Linn. Soc. N.S.W. 63, 55-64. - Dakin, W.J. (1939). The age determination of the tiger flathead (Neoplaty-cephalus (Colefaxia) macrodon (Ogilby), by means of otoliths, Rec. Aust. Mus. 20, 282-292. - Fairbridge, W.S. (1948). The effect of the war on the east Australian trawl fishery. J. Coun. Sci. Ind. Res. 21, 75-98. - Fairbridge, W.S. (1951). The New South Wales tiger flathead, Neoplatycephalus macrodon (Ogilby). I. Biology and age determination. Aust. J. Mar. Freshwater Res. 2, 117-178. - Fairbridge, W.S. (1952). The New South Wales tiger flathead, Neoplatycephalus macrodon (Ogilby). II. The age composition of the commercial catch, overfishing of the stocks and suggested conservation. Aust. J. Mar. Freshwater Res. 3, 1-31. - Han, V.C.F. (MS). Studies on the biology and fishery of the jackass fish, Nema-dactylus macropterus (Bloch and Schneider 1801) in eastern Australia. - Houston, T.W. (1955). The New South Wales trawlfishery: review of past course and examination of present condition. *Aust. J. Mar. Freshwater Res.* 6, 165-208. TABLE 1: SUMMARY OF MEASUREMENTS OF TIGER FLATHEAD FROM SAMPLES TAKEN EACH YEAR BY STEAM TRAWLERS. NUMBERS IN HEADINGS ARE CM. | | Total | Total | % | | | % of to | otal > 3 | 3 | | |---------|-----------|----------------|----------------|-------|-------|---------|----------|-------|-------| | Year | all sizes | <u>></u> 33 | <u>></u> 33 | 33-37 | 38-42 | 43-47 | 48-52 | 53-57 | 58-62 | | 1945/46 | 6,018 | 4,893 | 81.3 | 52.0 | 31.5 | 11.2 | 4.1 | 1.1 | 0.1 | | 1946/47 | 18,618 | 17,106 | 91.9 | 34.3 | 34.5 | 17.7 | 9.0 | 3.8 | 0.7 | | 1947/48 | , | 13,649 | 89.1 | 32.4 | 39.0 | 18.4 | 7.4 | 2.4 | 0.4 | | 1948/49 | 8,506 | 6,302 | 74.1 | 35.4 | 30.8 | 20.9 | 9.4 | 3.1 | 0.4 | | 1949/50 | • | 7,361 | 61.4 | 55.3 | 23.3 | 12.8 | 6.8 | 1.7 | 0.1 | | 1950/51 | 19,746 | 10,706 | 54.2 | 59.4 | 24.7 | 8.8 | 5.4 | 1.6 | 0.1 | | 1951/52 | 33,836 | 21,781 | 64.4 | 57.7 | 26.2 | 9.2 | 5.2 | 1.6 | 0.1 | | 1952/53 | • | 18,483 | 77.3 | 57.5 | 26.6 | 9.6 | 4.0 | 2.1 | 0.2 | | 1953/54 | , | 11,190 | 77.1 | 57.4 | 24.6 | 11.1 | 4.8 | 1.9 | 0.2 | | 1954/55 | 6,909 | 5,695 | 82.4 | 58.9 | 24.5 | 10.2 | 4.8 | 1.5 | 0.1 | | Total | 159,363 | | | | | | | | | TABLE 2: SUMMARY OF MEASUREMENTS OF TIGER FLATHEAD FROM SAMPLES TAKEN EACH YEAR BY OTHER BOATS. NUMBERS IN HEADINGS ARE CM. | | Total | Total | % | | | % of t | total ≥ . | 33 | | |--------|-----------|----------------|------|-------|-------|--------|-----------|-------|-------| | Year | all sizes | <u>></u> 33 | ≥ 33 | 33-37 | 38-42 | 43-47 | 48-52 | 53-57 | 58-62 | | 1945/4 | 6 32,547 | 25,676 | 78.9 | 55.5 | 29.6 | 10.3 | 3.7 | 0.8 | 0.1 | | 1946/4 | | 18,126 | 80.5 | 49.1 | 31.0 | 12.6 | 5.1 | 2.0 | 0.2 | | 1947/4 | 8 27,377 | 18,720 | 68.4 | 41.5 | 34.5 | 16.4 | 5.5 | 1.9 | 0.2 | | 1948/4 | 9 16,925 | 11,398 | 67.4 | 41.2 | 29.1 | 21.1 | 6.8 | 1.7 | 0.1 | | 1949/5 | 0 24,150 | 13,889 | 57.5 | 57.2 | 21.1 | 13.6 | 6.6 | 1.4 | 0.1 | | 1950/5 | 1 18,267 | 10,124 | 55.4 | 64.6 | 21.5 | 7.2 | 5.2 | 1.4 | 0.1 | | 1951/5 | 2 27,214 | 15,518 | 57.0 | 63.7 | 23.0 | 7.7 | 4.4 | 1.1 | 0.1 | | 1952/5 | | 13,990 | 63.7 | 66.8 | 21.7 | 7.4 | 3.2 | 0.8 | 0.1 | | 1953/5 | 4 18,446 | 12,138 | 65.8 | 72.7 | 17.9 | 6.2 | 2.2 | 0.9 | 0.1 | | 1954/5 | 5 18,967 | 13,645 | 71.9 | 72.6 | 19.0 | 6.1 | 1.8 | 0.4 | 0.1 | | 1955/5 | 6 12,129 | 9,602 | 79.2 | 68.1 | 24.2 | 5.3 | 1.7 | 0.6 | 0.1 | | 1956/5 | 7 16,106 | 13,396 | 83.2 | 55.8 | 29.4 | 11.2 | 2.7 | 0.8 | 0.1 | | 1957/5 | 8 13,635 | 11,006 | 80.7 | 56.2 | 26.5 | 12.5 | 3.8 | 0.9 | 0.1 | | 1958/5 | 9 18,294 | 14,788 | 80.8 | 59.0 | 26.8 | 10.1 | 3.3 | 0.7 | 0.1 | | 1959/6 | 0 24,406 | 19,576 | 80.2 | 63.6 | 23.6 | 8.6 | 3.4 | 0.7 | 0.1 | | 1960/6 | 1 17,729 | 15,729 | 88.7 | 57.7 | 28.4 | 9.9 | 3.1 | 0.8 | 0.1 | | 1961/6 | 2 19,283 | 16,778 | 87.0 | 60.7 | 25.3 | 10.0 | 3.0 | 0.9 | 0.1 | | 1962/6 | 3 20,428 | 17,964 | 87.9 | 60.6 | 26.8 | 8.2 | 3.0 | 1.3 | 0.1 | | 1963/6 | 4 15,666 | 13,266 | 84.7 | 55.7 | 27.4 | 11.1 | 4.3 | 1.4 | 0.1 | | 1964/6 | 5 21,725 | 18,473 | 85.0 | 67.7 | 20.0 | 7.9 | 3.1 | 1.2 | 0.1 | | 1965/6 | • | 13,336 | 85.9 | 62.2 | 26.7 | 7.0 | 2.9 | 1.1 | 0.1 | | 1966/6 | • | 15,104 | 80.3 | 64.7 | 23.9 | 7.3 | 2.8 | 1.2 | 0.1 | Total 442,118 TABLE 3: PERCENTAGES OF TIGER FLATHEAD \geq 33 CM IN 5-CM GROUPS FOR QUARTER-YEARS, IN SAMPLES TAKEN BY STEAM TRAWLERS. NUM-BERS IN HEADINGS ARE CM, BLANK MEANS ZERO, * MEANS < 0.1% | Year | Quarter | 33-37 | 38-42 | 43-47 | 48-52 | 53-57 | 58-62 | Total | |---------|---------|--------|-------|-------|-------|-------|-----------|-------| | 1945/46 | JulSep. | 52.3 | 30.7 | 11.7 | 4.2 | 1.1 | * | 2,441 | | | OctDec. | 49.4 | 32.9 | 13.4 | 3.4 | 0.7 | 0.2 | 1,602 | | | JanMar. | 61.3 | 28.4 | 2.8 | 5.2 | 2.3 | | 599 | | | AprJun. | 43.4 | 37.8 | 11.6 | 5.6 | 1.6 | | 251 | | 1946/47 | JulSep. | 38.0 | 36.2 | 17.6 | 5.7 | 2.3 | 0.2 | 3,779 | | | OctDec. | 36.5 | 34.7 | 16.6 | 8.5 | 3.3 | 0.4 | 5,225 | | | JanMar. | 36.7 | 38.1 | 15.2 | 7.8 | 2.1 | 0.1 | 5,582 | | | AprJun. | 19.2 | 23.5 | 25.5 | 17.6 | 10.6 | 3.6 | 2,520 | | 1947/48 | JulSep. | 39.8 | 41.8 | 13.8 | 3.6 | 1.0 | * | 3,765 | | | OctDec. | 28.0 | 31.2 | 19.8 | 11.7 | 7.3 | 2.0 | 2,064 | | | JanMar. | 30.0 | 39.9 | 20.1 | 8.3 | 1.6 | 0.1 | 6,993 | | | AprJun. | 30.8 | 38.3 | 21.5 | 6.7 | 2.2 | 0.5 | 827 | | 1948/49 | JulSep. | 35.6 | 40.4 | 18.6 | 5.0 | 0.4 | | 480 | | | OctDec. | 46.4 | 22.7 | 15.6 | 9.3 | 5.1 | 0.9 | 1,919 | | | JanMar. | 29.5 | 36.5 | 23.4 | 8.7 | 1.7 | 0.2 | 2,848 | | • | AprJun. | 31.4 | 26.1 | 24.8 | 13.1 | 4.5 | 0.1 | 1,055 | | 1949/50 | JulSep. | 45.6 | 23.7 | 20.7 | 8.8 | 1.2 | | 410 | | | OctDec. | 55.1 | 24.1 | 11.3 | 7.1 | 2.3 | 0.1 | 2,976 | | | JanMar. | 46.3 | 26.6 | 17.3 | 8.4 | . 1.4 | * | 2,315 | | | AprJun. | 70.7 | 17.1 | 7.2 | 3.9 | 1.1 | | 1,660 | | 1950/51 | JulSep. | 64.2 | 24.0 | 6.8 | 3.6 | 1.2 | 0.2 | 2,645 | | | OctDec. | 62.8 | 23.3 | 7.4 | 4.2 | 2.0 | 0.3 | 3,681 | | | JanMar. | 52.7 | 25.6 | 11.9 | 8.2 | 1.6 | * . | 3,836 | | | AprJun. | 60.1 | 32.2 | 6.1 | 1.6 | | | 544 | | 1951/52 | JulSep. | 70.7 | 20.8 | 4.9 | 2.3 | 1.3 | * | 4,537 | | | OctDec. | 60.4 | 25.3 | 8.3 | 4.1 | 1.8 | 0.1 | 5,181 | | | JanMar. | 48.6 | 29.8 | 11.7 | 8.2 | 1.6 | 0.1 | 7,408 | | | AprJun. | 56.4 | 27.0 | 10.6 | 4.3 | 1.7 | * | 4,655 | | 1952/53 | JulSep. | 67.9 | 22.0 | 6.0 | 2.4 | 1.5 | 0.2 | 6,569 | | | OctDec. | 62.5 | 25.4 | 7.6 | 2.5 | 1.8 | 0.2 | 5,368 | | | JanMar. | 39.9 | 33.5 | 15.2 | 8.2 | 3.1 | 0.1 | 4,370 | | | AprJun. | 49.1 | 29.9 | 13.7 | 4.1 | 3.2 | | 2,176 | | 1953/54 | JulSep. | 66.5 | 22.1 | 7.6 | 2.4 | 1.3 | 0.1 | 2,389 | | | OctDec. | 62.2 | 24.5 | 9.5 | 2.6 | 1.1 | 0.1^{-} | 2,501 | | | JanMar. | . 45.7 | 29.1 | 15.0 | 7.6 | 2.4 | 0.2 | 3,218 | | | AprJun. | 58.6 | 22.1 | 11.1 | 5.7 | 2.3 | 0.2 | 3,082 | | 1954/55 | JulSep. | 61.7 | 22.7 | 9.1 | 4.7 | 1.6 | 0.2 | 2,263 | | | OctDec. | 59.9 | 23.4 | 10.1 | 5.1 | 1.4 | 0.1 | 1,847 | | | JanMar. | 53.4 | 25.7 | 13.5 | 5.6 | 1.7 | 0.1 | 894 | | | AprJun. | 54.3 | 32.0 | 9.7 | 2.7 | 1.3 | | 691 | TABLE 4: PERCENTAGES OF TIGER FLATHEAD > 33 CM IN 5-CM GROUPS FOR QUARTER-YEARS, IN SAMPLES TAKEN BY OTHER BOATS. NUMBERS IN HEADINGS ARE CM, BLANK MEANS ZERO, * MEANS < 0.1% | | | | , | | _ | | | | |---------|--|------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------------------| | Year | Quarter | 33-37 | 38-42 | 43-47 | 48-52 | 53-57 | 58-62 | Total | | 1945/46 | JulSep. OctDec. JanMar. AprJun. | 65.0
58.2
46.7
35.2 | 24.3
29.9
32.9
40.8 | 7.4
8.7
13.3
18.1 | 2.6
2.5
5.8
4.9 | 0.7
0.6
1.2
1.0 | *
0.1
0.1
* | 8,853
7,391
7,565
1,867 | | 1946/47 | JulSep.
OctDec.
JanMar.
AprJun. | 59.7
41.2
49.8
34.8 | 28.4
31.6
33.4
32.8 | 7.6
17.0
10.9
19.8 | 3.0
7.2
4.4
7.7 | 1.2
2.7
1.4
4.2 | 0.1
0.3
0.1
0.7 | 6,539
6,154
3,817
1,616 | | 1947/48 | JulSep.
OctDec.
JanMar.
AprJun. | 49.3
42.4
37.2
35.9 | 35.5
33.9
34.7
32.7 | 10.1
15.1
19.5
22.5 | 3.6
5.5
6.4
7.0 | 1.3
2.7
2.0
1.7 | 0.2
0.4
0.2
0.2 | 5,170
4,143
6,778
2,629 | | 1948/49 | JulSep.
OctDec.
JanMar.
AprJun. | 45.8
43.2
38.8
40.0 | 35.6
23.4
30.4
29.4 | 13.2
21.9
22.7
22.6 | 4.1
8.0
6.8
6.8 | 1.2
3.3
1.2
1.1 | 0.1
0.2
0.1
0.1 | 1,634
2,802
3,322
3,640 | | 1949/50 | JulJun.
OctDec.
JanMar.
AprJun. | 52.0
54.8
57.0
74.9 | 24.5
22.1
19.4
16.0 | 14.4
13.9
15.2
6.6 | 7.0
7.1
7.4
2.1 | 1.8
2.0
0.9
0.4 | 0.3
0.1
0.1 | 4,141
2,977
5,068
1,703 | | 1950/51 | JulSep.
OctDec.
JanMar.
AprJun. | 69.2
57.5
59.1
70.8 | 20.6
21.6
23.2
20.0 | 5.9
9.2
8.9
5.1 | 3.4
7.6
7.0
3.4 | 0.8
3.5
1.7
0.6 | 0.1
0.6
0.1
0.1 | 1,705
1,060
3,912
3,447 | | 1951/52 | JulSep. OctDec. JanMar. AprJun. |
76.1
68.1
59.5
69.2 | 16.5
22.0
24.4
22.0 | 3.8
6.3
9.2
5.2 | 3.0
3.0
5.4
2.5 | 0.6
0.6
1.4
1.1 | 0.1 | 1,134
2,748
9,272
2,364 | | 1952/53 | JulSep.
OctDec.
JanMar.
AprJun. | 69.3
70.6
61.9
69.2 | 20.1
19.2
24.8
20.4 | 6.2
5.9
8.8
7.5 | 3.4
3.2
3.5
2.3 | 0.9
0.9
0.9
0.6 | 0.1
0.2
0.1 | 3,647
2,552
5,009
2,782 | | 1953/54 | JulSep. OctDec. JanMar. AprJun. | 75.3
62.0
73.1
74.9 | 17.0
23.2
17.3
17.1 | 4.7
9.0
6.6
5.3 | 1.8
4.2
2.1
1.8 | 1.1
1.6
0.8
0.8 | 0.1
0.1
0.1 | 1,555
1,519
4,547
4,517 | | 1954/55 | JulSep.
OctDec.
JanMar.
AprJun. | 76.2
69.7
67.0
71.6 | 16.7
21.4
22.4
18.4 | 5.1
5.9
7.6
7.9 | 1.5
2.2
2.7
1.5 | 0.4
0.7
0.3
0.5 | 0.1
0.1
*
0.1 | 6,561
2,497
2,708
1,879 | | 1955/56 | JulSep.
OctDec.
JanMar.
AprJun. | 77.3
71.9
62.9
69.0 | 17.5
20.3
27.9
24.3 | 3.7
5.2
6.4
4.8 | 1.0
1.6
2.3
1.3 | 0.5
0.8
0.5
0.5 | 0.2
*
0.1 | 1,365
1,358
3,792
3,087 | cont. | Year | Quarter | 33-37 | 38-42 | 43-47 | 48-52 | 53-57 | 58-62 | Total | |---------|---------|-------|--------------|------------|------------|------------|-----------|----------------| | 1956/57 | • | 66.2 | 26.0 | 5.7 | 1.6 | 0.5 | * | 3,537 | | | OctDec. | 55.9 | 29.9 | 10.6 | 2.7 | 0.9 | • | 1,552 | | | JanMar. | 49.9 | 31.3 | 14.3 | 3.6 | 8.0 | 0.1 | 4,674 | | | AprJun. | 53.2 | 29.9 | 13.1 | 2.9 | 0.8 | 0.1 | 3,633 | | 1957/58 | JulSep. | 54.1 | 29.0 | 13.1 | 3.1 | 0.6 | 0.1 | 2,349 | | | OctDec. | 55.0 | 23.5 | 13.8 | 6.0 | 1.5 | 0.2 | 2,084 | | | JanMar. | 54.2 | 27.1 | 13.7 | 4.1 | 0.8 | 0.1 | 4,348 | | | AprJun. | 63.5 | 25.4 | 8.5 | 2.0 | 0.6 | | 2,225 | | 1958/59 | JulSep. | 64.5 | 25.1 | 7.8 | 2.0 | 0.6 | | 4,519 | | | OctDec. | 54.6 | 27.0 | 12.7 | 4.3 | 1.2 | 0.2 | 2,813 | | | JanMar. | 57.4 | 27.5 | 10.7 | 3.8 | 0.5 | 0.1 | 5,619 | | | AprJun. | 57.3 | 28.2 | 10.4 | 3.5 | 0.5 | 0.1 | 1,837 | | 1959/60 | JulSep. | 58.8 | 25.6 | 10.2 | 4.2 | 1.2 | * | 4,770 | | • | OctDec. | 67.8 | 20.8 | 7.5 | 3.0 | 0.9 | * | 3,914 | | | JanMar. | 61.9 | 24.6 | 9.1 | 3.7 | 0.6 | 0.1 | 7,001 | | | AprJun. | 68.4 | 22.2 | 7.0 | 2.2 | 0.2 | * | 3,891 | | 1960/61 | JulSep. | 63.3 | 25.9 | 8.1 | 2.1 | 0.6 | * | 6,323 | | 1,00,01 | OctDec. | 62.4 | 25.1 | 8.6 | 3.2 | 0.6 | 0.1 | 4,341 | | | JanMar. | 50.6 | 31.5 | 11.9 | 4.4 | 1.3 | 0.3 | 2,828 | | | AprJun. | 41.8 | 38.1 | 14.8 | 4.2 | 1.1 | * | 2,237 | | 1061/62 | JulSep. | 57.3 | 28.5 | 10.4 | 3.2 | | * | | | 1901/02 | OctDec. | 65.7 | 20.6 | 9.6 | 2.8 | 0.6 1.1 | 0.2 | 7,163 | | | JanMar. | 63.8 | 22.5 | 10.0 | 2.5 | 1.1 | 0.1 | 4,347
3,496 | | | AprJun. | 56.1 | 29.5 | 10.3 | 3.3 | 0.7 | 0.1 | 1,772 | | 1062/62 | JulSep. | 66.4 | | | | | | | | 1902/03 | OctDec. | 61.7 | 24.3
25.6 | 6.1
8.5 | 2.3
2.8 | 0.8 | 0.1 | 6,334 | | | JanMar. | 56.1 | 27.8 | 10.0 | 3.8 | 1.3
2.2 | 0.1 0.1 | 6,021 | | | AprJun. | 48.9 | 34.8 | 10.5 | 4.3 | 1.4 | 0.1 | 2,958
2,651 | | 1060161 | _ | | | | | | | | | 1963/64 | JulSep. | 54.1 | 29.4 | 11.0 | 3.9 | 1.4 | 0.2 | 5,724 | | | OctDec. | 57.4 | 24.4 | 10.8 | 5.6 | 1.7 | 0.1 | 2,653 | | | JanMar. | 54.2 | 27.2 | 12.2 | 4.6 | 1.7 | 0.1 | 3,741 | | | AprJun. | 64.5 | 24.5 | 8.0 | 2.6 | 0.4 | | 1,148 | | 1964/65 | JulSep. | 64.6 | 22.3 | 9.6 | 2.6 | 0.8 | 0.1 | 5,090 | | | OctDec. | 70.4 | 17.1 | 7.6 | 3.7 | 1.1 | 0.1 | 4,877 | | | JanMar. | 65.2 | 21.1 | 8.3 | 3.6 | 1.6 | 0.2 | 5,127 | | | AprJan. | 72.1 | 19.1 | 5.1 | 2.4 | 1.2 | 0.1 | 3,379 | | 1965/66 | JulSep. | 66.7 | 23.6 | 6.2 | 2.3 | 1.1 | 0.1 | 3,584 | | | OctDec. | 63.2 | 25.4 | 6.1 | 3.8 | 1.4 | 0.1 | 3,271 | | | JanMar. | 63.4 | 27.4 | 6.6 | 2.1 | 0.5 | | 3,874 | | | AprJun. | 52.7 | 31.7 | 9.6 | 3.9 | 1.7 | 0.4 | 2,607 | | 1966/67 | JulSep. | 61.7 | 26.6 | 7.5 | 3.0 | 1.1 | 0.1 | 4,943 | | | OctDec. | 70.4 | 20.4 | 5.6 | 2.4 | 1.1 | 0.1 | 4,033 | | | JanMar. | 64.5 | 23.1 | 8.3 | 2.9 | 1.1 | 0.1 | 4,679 | | | AprJun. | 61.0 | 25.8 | 8.7 | 2.8 | 1.4 | 0.3 | 2,049 | TABLE 5: PERCENTAGES OF LEGAL-SIZED TIGER FLATHEAD AT \geq 37 CM, SUMMARIZED FOR GROUPS OF YEARS FROM TABLES 1 AND 2 | Period | Steam | trawlers | Other | boats | |-----------------|-------|----------|-------|-------| | | Range | Mean | Range | Mean | | 1945/46 | 48 | 48 | 44 | 44 | | 1946/47-1948/49 | 65-68 | 66 | 51-59 | 56 | | 1949/50-1954/55 | 41-45 | 42 | 27-43 | 34 | | 1955/56-1966/67 | | , | 32-44 | 39 | TABLE 6: CATCHES OF TIGER FLATHEAD BY STEAM TRAWLERS (ST) AND OTHER BOATS (OB), AVERAGE NUMBERS OF BOATS AND VESSEL UNITS FISHING, AND MEAN CATCHES PER BOAT AND VESSEL UNIT, BY YEARS. VESSEL UNITS COUNTED AS 7 PER ST, 1 PER OB. BLANKS MEAN ZERO, * MEANS UNKNOWN | Year | Cat | ch (1,0 | 00 lb) | | | boats | | h (1,0 | | | |---------|--------|---------|--------|------|--------|-------|-------|--------|------|-------------| | | | | | | and ur | | | boat o | | | | | ST | OB | Total | ST | OB | Units | ST | OB | Unit | | | 1928 | 12,147 | | 12,147 | 11.0 | | 77 | 1,104 | | 158 | | | 1934 | 5,759 | | 5,759 | 14.0 | | 98 | 411 | | 59 | | | 1938/39 | 7,037 | * | * | 14.0 | 6 | . 104 | 503 | * | * | | | 1939/40 | 5,765 | * | * | 10.0 | 10 | 80 | 576 | * | * | | | 1940/41 | 2,275 | . * | * | 4.0 | - 26 | 54 | 569 | * | * | | | 1941/42 | 869 | * | * | 3.0 | 49 | 70 | 290 | * | * | | | 1942/43 | 506 | 27 | 533 | 1.0 | 4 | 11 | 506 | 7 | 48 | | | 1943/44 | 506 | 704 | 1,210 | 1.0 | 10 | 17 | 506 | 70 | 71 | | | 1944/45 | 702 | 4,961 | 5,663 | 2.5 | 36 | 54 | 281 | 138 | 105 | | | 1945/46 | 1,229 | 3,988 | 5,217 | 4.5 | 57 | 88 | 273 | 70 | 59 | | | 1946/47 | 1,901 | 3,075 | 4,976 | 8.0 | 67 | 123 | 238 | 46 | 40 | | | 1947/48 | 1,946 | 1,892 | 3,838 | 12.0 | 75 | 159 | 162 | 25 | 24 | | | 1948/49 | 930 | 1,197 | 2,127 | 11.0 | 58 | 135 | 85 | · 21 | 16 | | | 1949/50 | 885 | 1,462 | 2,347 | 11.5 | 52 | 132 | 77 | 28 | 18 | | | 1950/51 | 1,708 | 818 | 2,526 | 11.5 | 41 | 122 | 149 | 20 | 21 | | | 1951/52 | 1,833 | 1,108 | 2,941 | 10.0 | 39 | 116 | 183 | 28 | 25 | | | 1952/53 | 1,737 | 1,389 | 3,126 | 10.0 | 63 | 140 | 174 | 22 | 22 | | | 1953/54 | 1,434 | 987 | 2,421 | 10.0 | ~ 86 ~ | 163 | 143 | 11 | 15 | | | 1954/55 | 892 | 1,133 | 2,025 | 7.5 | 106 | 158 | 119 | 11 | 13 | | | 1955/56 | 463 | 1,043 | 1,506 | 4.0 | 105 | 133 | 116 | 10 | 11 | | | 1956/57 | 347 | 1,324 | 1,671 | 4.0 | 139 | 167 | 87 | 10 | 10 | | | 1957/58 | 168 | 1,006 | 1,174 | 4.0 | 146 | 174 | 42 | 7 | 7 | | | 1958/59 | 41 | 1,210 | 1,251 | 1.0 | 134 | 141 | 41 | 9 | 9 | | | 1959/60 | * | * | 1,254 | 0.5 | 130 | 134 | * | * | 9 | | | 1960/61 | * | * | 1,153 | 0.5 | 1.48 | 152 | * | * | 8 | | | 1961/62 | | 1,863 | 1,863 | | 158 | 158 | | 12 | 12 | | | 1962/63 | | 3,027 | 3,027 | | 198 | 198 | | 15 | 15 | | | 1963/64 | | 2,324 | 2,324 | | 192 | 192 | | 12 | 12 | | | 1964/65 | | 2,978 | 2,978 | | 188 | 188 | | 16 | 16 | | | 1965/66 | | 2,366 | 2,366 | | 145 | 145 | | 16 | 16 | | | 1966/67 | | 1,930 | 1,930 | | 147 | 147 | | 13 | 13 | | | 1975/76 | | 1,788 | 1,788 | | * | * | | * | * | | TABLE 7: SUMMARY OF MEASUREMENTS OF MORWONG FROM SAMPLES TAKEN EACH YEAR BY STEAM TRAWLERS. NUMBERS IN HEADINGS ARE CM | Total | Total | % | % of | Total ≥ 3 | 3 | |-----------|--|---|---|--|---| | all sizes | ≥ 33 | ≥ 33 | 33-37 | 38-42 | 43-47 | | 13,041 | 4,795 | 36.8 | 89.4 | 10.4 | 0.2 | | 12,887 | 3,992 | 31.0 | 90.0 | 9.9 | 0.1 | | 7,624 | 2,159 | 28.3 | 91.7 | 8.2 | 0.1 | | 9,008 | 3,047 | 33.8 | 83.2 | 16.2 | 0.6 | | 8,350 | 2,484 | 29.8 | 84.4 | 15.1 | 0.5 | | 9,798 | 3,002 | 30.6 | 81.6 | 17.9 | 0.5 | | 7,817 | 2,791 | 35.7 | 79.9 | 19.2 | 0.9 | | 11,595 | 4,297 | 37.1 | 79.8 | 18.7 | 1.5 | | 9,296 | 3,359 | 36.1 | 79.2 | 19.6 | 1.2 | | 6,754 | 2,169 | 32.1 | 82.6 | 17.0 | 0.4 | | 4,793 |
1,956 | 40.8 | 80.5 | 18.8 | 0.7 | | 100,963 | | | | | | | | all sizes 13,041 12,887 7,624 9,008 8,350 9,798 7,817 11,595 9,296 6,754 4,793 | all sizes ≥ 33 13,041 4,795 12,887 3,992 7,624 2,159 9,008 3,047 8,350 2,484 9,798 3,002 7,817 2,791 11,595 4,297 9,296 3,359 6,754 2,169 4,793 1,956 | all sizes \geq 33 \geq 33 13,041 4,795 36.8 12,887 3,992 31.0 7,624 2,159 28.3 9,008 3,047 33.8 8,350 2,484 29.8 9,798 3,002 30.6 7,817 2,791 35.7 11,595 4,297 37.1 9,296 3,359 36.1 6,754 2,169 32.1 4,793 1,956 40.8 | all sizes \geq 33 \geq 33 \geq 33 33-37 13,041 4,795 36.8 89.4 12,887 3,992 31.0 90.0 7,624 2,159 28.3 91.7 9,008 3,047 33.8 83.2 8,350 2,484 29.8 84.4 9,798 3,002 30.6 81.6 7,817 2,791 35.7 79.9 11,595 4,297 37.1 79.8 9,296 3,359 36.1 79.2 6,754 2,169 32.1 82.6 4,793 1,956 40.8 80.5 | all sizes \geq 33 \geq 33 \geq 33 33-37 38-42 13,041 4,795 36.8 89.4 10.4 12,887 3,992 31.0 90.0 9.9 7,624 2,159 28.3 91.7 8.2 9,008 3,047 33.8 83.2 16.2 8,350 2,484 29.8 84.4 15.1 9,798 3,002 30.6 81.6 17.9 7,817 2,791 35.7 79.9 19.2 11,595 4,297 37.1 79.8 18.7 9,296 3,359 36.1 79.2 19.6 6,754 2,169 32.1 82.6 17.0 4,793 1,956 40.8 80.5 18.8 | TABLE 8: SUMMARY OF MEASUREMENTS OF MORWONG FROM SAMPLES TAKEN EACH YEAR BY OTHER BOATS. NUMBERS IN HEADINGS ARE CM | Year | Total | Total | % | % of | Total ≥ 3 | i3 | |---------|-----------|-------|-------------|-------|-----------|-------| | | all sizes | ≥ 33 | <u>≥</u> 33 | 33–37 | 38-42 | 43-47 | | 1947/48 | 2,960 | 1,210 | 40.9 | 89.3 | 10.7 | | | 1948/49 | 4,789 | 2,055 | 42.9 | 91.1 | 8.3 | 0.6 | | 1949/50 | 5,008 | 1,725 | 34.4 | 89.3 | 10.6 | 0.1 | | 1950/51 | 4,109 | 1,215 | 29.6 | 86.7 | 12.9 | 0.4 | | 1951/52 | 2,440 | 875 | 35.9 | 85.9 | 13.6 | 0.5 | | 1952/53 | 3,736 | 1,058 | 28.3 | 91.1 | 8.6 | 0.3 | | 1953/54 | 1,897 | 780 | 41.1 | 84.2 | 15.3 | 0.5 | | 1954/55 | 4,303 | 1,664 | 38.7 | 86.9 | 12.8 | 0.3 | | 1955/56 | 9,606 | 3,301 | 34.4 | 89.2 | 10.6 | 0.2 | | 1956/57 | 6,653 | 2,162 | 32.5 | 86.9 | 12.7 | 0.4 | | 1957/58 | 5,718 | 2,010 | 35.2 | 85.8 | 13.8 | 0.4 | | 1958/59 | 7,637 | 2,786 | 36.5 | 84.5 | 15.2 | 0.3 | | 1959/60 | 8,738 | 3,338 | 38.2 | 86.0 | 13.5 | 0.5 | | 1960/61 | 10,389 | 4,367 | 42.0 | 84.3 | 15.2 | 0.5 | | 1961/62 | 11,440 | 5,159 | 45.1 | 82.5 | 16.4 | 1.1 | | 1962/63 | 16,971 | 7,100 | 41.8 | 85.3 | 14.2 | 0.5 | | 1963/64 | 22,288 | 8,614 | 38.6 | 84.7 | 14.8 | 0.5 | | 1964/65 | 22,609 | 8,272 | 36.6 | 87.0 | 12.4 | 0.6 | | 1965/66 | 14,215 | 5,820 | 40.9 | 85.9 | 13.4 | 0.7 | | 1966/67 | 18,959 | 6,947 | 36.6 | 87.7 | 11.7 | 0.6 | | Total | 184,465 | | | | | | TABLE 9: CATCHES OF MORWONG BY STEAM TRAWLERS (ST) AND OTHER BOATS (OB), AVERAGE NUMBERS OF BOATS AND VESSEL UNITS FISHING, AND MEAN CATCHES PER BOAT AND VESSEL UNIT, BY YEARS, VESSEL UNITS COUNTED AS 33 PER ST, 1 PER OB. BLANKS MEAN ZERO, * MEANS UNKNOWN | | | GCC11 (- | ,000 lb) | Num | bers (| of boats | Catc | a (1,0 | 00 1ь) | |---------|-------|----------|----------|------|--------|----------|-------|--------|----------| | | | | | | and u | nits | per 1 | boat o | r unit | | | ST | OB | Total | ST | OB | Units | ST | OB | Unit | | 1942/43 | 20 | | 20 | 1.0 | 4 | 37 | 20 | | <u> </u> | | 1943/44 | 2 | 14 | 16 | 1.0 | 10 | 43 | 2 | 1 | < 1 | | 1944/45 | 267 | 262 | 529 | 2.5 | 36 | 118 | 107 | 7 | 4 | | 1945/46 | 1,602 | 360 | 1,962 | 4.5 | 57 | 206 | 356 | 6 | 10 | | 1946/47 | 3,452 | 486 | 3,938 | 8.0 | 67 | 331 | 432 | 7 | 12 | | 1947/48 | 3,556 | 437 | 3,993 | 12.0 | 75 | 471 | 296 | 6 | 8 | | 1948/49 | 2,559 | 489 | 3,048 | 11.0 | 58 | 421 | 233 | 8 | 7 | | 1949/50 | 2,041 | 462 | 2,503 | 11.5 | 52 | 432 | 177 | 9 | 6 | | 1950/51 | 1,805 | 353 | 2,158 | 11.5 | 41 | 420 | 157 | 9 | 5 | | 1951/52 | 2,053 | 225 | 2,278 | 10.0 | 39 | 369 | 205 | 6 | 6 | | 1952/53 | 2,570 | 538 | 3,108 | 10.0 | 63 | 393 | 257 | 9 | 8 | | 1953/54 | 2,043 | 586 | 2,629 | 10.0 | 86 | 416 | 204 | 7 | . 6 | | 1954/55 | 1,885 | 807 | 2,692 | 7.5 | 106 | 354 | 251 | 8 | 8 | | 1955/56 | 1,484 | 808 | 2,292 | 4.0 | 105 | 237 | 371 | 8 | 10 | | 1956/57 | 1,355 | 1,993 | 3,348 | 4.0 | 139 | 271 | 339 | 14 | 14 | | 1957/58 | 949 | 1,594 | 2,543 | 4.0 | 146 | 278 | 237 | 11 | 9 | | 1958/59 | 164 | 1,811 | 1,975 | 1.0 | 134 | 167 | 164 | 14 | 12 | | 1959/60 | * | * | 1,787 | 0.5 | 130 | 146 | * | * | 12 | | 1960/61 | * | * | 1,433 | 0.5 | 148 | 164 | * | * | 9 | | 1961/62 | | 1,995 | 1,995 | | 158 | 158 | | 13 | 13 | | 1962/63 | | 3,860 | 3,860 | | 198 | 198 | | 19 | 19 | | 1963/64 | | 3,084 | 3,084 | | 192 | 192 | | 16 | 16 | | 1964/65 | | 2,099 | 2,099 | | 188 | 188 | | 11 | 11 | | 1965/66 | | 1,861 | 1,861 | | 145 | 145 | | 13 | 13 | | 1966/67 | | 2,360 | 2,360 | | 147 | 147 | | 16 | 16 | | 1975/76 | | 3,247 | 3,247 | | * | * | | * | * | TABLE 10: SUMMARY OF MEASUREMENTS OF REDFISH FROM SAMPLES TAKEN EACH YEAR BY STEAM TRAWLERS. NUMBERS IN HEADINGS ARE CM | Year | Total | Total | % | % of | Total ≥ 2 | .4 | |---------|-----------|--------|------|-------|-----------|-------| | | all sizes | ≥ 24 | ≥ 24 | 24-28 | 29-33 | 34-38 | | 1947/48 | 13,235 | 8,758 | 66.2 | 88.1 | 11.6 | 0.3 | | 1948/49 | 39,119 | 14,723 | 37.6 | 96.8 | 3.2 | < 0.1 | | 1949/50 | 41,171 | 12,507 | 30.4 | 96.3 | 3.7 | < 0.1 | | 1950/51 | 16,250 | 7,074 | 43.5 | 92.4 | 7.5 | 0.1 | | 1951/52 | 10,354 | 5,959 | 57.6 | 88.0 | 11.9 | 0.1 | | 1952/53 | 7,494 | 3,147 | 42.0 | 93.0 | 7.0 | < 0.1 | | 1953/54 | 10,506 | 5,624 | 53.5 | 91.7 | 8.0 | 0.3 | | 1954/55 | 9,521 | 5,978 | 62.8 | 88.6 | 11.3 | 0.1 | | 1955/56 | 5,101 | 3,285 | 64.4 | 90.9 | 9.0 | 0.1 | | 1956/57 | 2,663 | 1,701 | 63.9 | 94.3 | 5.7 | | | 1957/58 | 2,647 | 1,615 | 61.0 | 90.9 | 9.0 | 0.1 | | 1958/59 | 2,090 | 1,270 | 60.8 | 92.7 | 7.2 | 0.1 | | Total | 160,151 | | | | | • | TABLE 11: SUMMARY OF MEASUREMENTS OF REDFISH FROM SAMPLES TAKEN EACH YEAR BY OTHER BOATS. NUMBERS IN HEADINGS ARE CM | Year | Total | Tota1 | % | % of T | otal ≥ 2 | · | |---------|-----------|-------|------|--------|----------|---------------------------------------| | | all sizes | ≥ 24 | ≥ 24 | 24-28 | 29-33 | 34-38 | | 1948/49 | 2,949 | 505 | 17.1 | 98.3 | 1.7 | · · · · · · · · · · · · · · · · · · · | | 1949/50 | 3,163 | 923 | 29.2 | 98.7 | 1.3 | | | 1950/51 | 6,291 | 1,175 | 18.7 | 99.6 | 0.4 | | | 1951/52 | 1,527 | 478 | 31.3 | 99.4 | 0.6 | | | 1952/53 | 3,547 | 1,181 | 33.3 | 98.6 | 1.4 | < 0.1 | | 1953/54 | 1,784 | 573 | 32.1 | 97.4 | 2.6 | | | 1954/55 | 894 | 365 | 40.8 | 96.7 | 3.3 | | | 1955/56 | 2,070 | 1,032 | 49.9 | 93.3 | 6.7 | | | 1956/57 | 2,947 | 1,230 | 41.7 | 98.0 | 2.0 | | | 1957/58 | 3,348 | 1,345 | 40.2 | 97.6 | 2.4 | | | 1958/59 | 2,902 | 1,448 | 49.9 | 92.4 | 7.3 | 0.3 | | 1959/60 | 3,855 | 2,002 | 51.9 | 88.6 | 11.4 | < 0.1 | | 1960/61 | 2,040 | 1,287 | 63.1 | 88.3 | 11.7 | ~ - | | 1961/62 | 2,833 | 1,707 | 60.2 | 89.5 | 10.3 | 0.2 | | 1962/63 | 2,241 | 1,515 | 67.6 | 90.7 | 9.2 | 0.1 | | 1963/64 | 2,023 | 1,313 | 64.9 | 91.7 | 8.3 | • • • • | | 1964/65 | 3,223 | 2,053 | 63.7 | 93.2 | 6.6 | 0.2 | | 1965/66 | 1,770 | 1,248 | 70.5 | 80.8 | 18.6 | 0.6 | | 1966/67 | 4,382 | 2,731 | 62.3 | 88.6 | 11.2 | 0.2 | | Total | 53,789 | | | | | | TABLE 12: CATCHES OF REDFISH BY STEAM TRAWLERS (ST) AND OTHER BOATS (OB), AVERAGE NUMBERS OF BOATS AND VESSEL UNITS FISHING, AND MEAN CATCHES PER BOAT AND VESSEL UNIT, BY YEARS. VESSEL UNITS COUNTED AS 82 PER ST, 1 PER OB. BLANKS MEAN ZERO, * MEANS UNKNOWN | Year | (| Catch (I | ,000 lb) | | | of boats | | | 00 lb) | |---------|-------|----------|---------------|------|--------|----------|-----|----|--------| | | • | | | | and ur | | | | r unit | | | ST | OB | To <u>tal</u> | ST | OB | Units | ST | OB | Unit | | 1942/43 | 133 | | 133 | 1.0 | 4 | 86 | 133 | | 1 | | 1943/44 | 54 | | 54 | 1.0 | 10 | 92 | 54 | | 1 | | 1944/45 | 83 | 24 | 107 | 2.5 | 36 | 241 | 33 | 1 | < 1 | | 1945/46 | 752 | 53 | 805 | 4.5 | 57 | 426 | 167 | 1 | 2 | | 1946/47 | 1,847 | 134 | 1,981 | 8.0 | 67 | 723 | 231 | 2 | 3 | | 1947/48 | 3,251 | 240 | 3,491 | 12.0 | 75 | 1,059 | 271 | 3 | 3 | | L948/49 | 4,977 | 481 | 5,458 | 11.0 | 58 | 960 | 452 | 8 | 6 | | 1949/50 | 4,557 | 331 | 4,888 | 11.5 | 52 | 995 | 396 | 6 | 5 | | 1950/51 | 2,105 | 686 | 2,791 | 11.5 | 41 | 984 | 183 | 17 | 3 | | 1951/52 | 826 | 92 | 918 | 10.0 | 39 | 859 | 83 | 2 | 1 | | 1952/53 | 1,086 | 452 | 1,538 | 10.0 | 63 | 883 | 107 | 7 | 2 | | 1953/54 | 1,587 | 120 | 1,707 | 10.0 | 86 | 906 | 159 | 1 | 2 | | 1954/55 | 925 | 79 | 1,004 | 7.5 | 106 | 721 | 123 | 1 | 1 | | 1955/56 | 421 | 69 | 490 | 4.0 | 105 | 433 | 105 | 1 | 1 | | 1956/57 | 304 | 129 | 433 | 4.0 | 139 | 467 | 76 | 1 | 1 | | 1957/58 | 336 | 165 | 501 | 4.0 | 146 | 474 | 84 | 1 | 1 | | 1958/59 | 181 | 117 | 298 | 1.0 | 134 | 216 | 181 | 1 | 1 | | 1959/60 | * | * | 172 | 0.5 | 130 | 171 | * | * | 1 | | 1960/61 | * | * | 86 | 0.5 | 148 | 189 | * | * | < 1 | | 1961/62 | | 92 | . 92 | | 158 | 158 | | 1 | 1 | | 1962/63 | | 243 | 243 | | 198 | 198 | | 1 | 1 | | 1963/64 | | 192 | 192 | | 192 | 192 | | 1 | 1 | | 1964/65 | | 210 | 210 | | 188 | 188 | | 1 | 1 | | 1965/66 | | 157 | 157 | | 145 | 145 | | 1 | 1 | | 1966/67 | | 207 | 207 | | 147 | 147 | | 1 | 1 | | 1975/76 | | 2,042 | 2,042 | | * | * | | * | * | TABLE A: MARKET MEASUREMENTS OF TIGER FLATHEAD CAUGHT BY STEAM TRAWLERS (ST) AND OTHER BOATS (OB), 1945/46 TO 1954/55 1945/46 | 20 | | | Jul. | - Sep. | Oct. | | Jan. | | Apr. | |
--|-----------|-----|-------|--------|-------|-------|------|-------|------|-------| | 21 | <u>S'</u> | | ST | OB | ST | OB | ST | OB | ST | OB | | 122 1 4 123 4 10 1 2 124 8 36 2 6 1 125 13 50 2 10 6 126 21 59 11 36 11 127 29 75 8 57 1 37 1 129 72 413 41 136 1 127 5 129 72 413 41 136 1 127 5 120 109 676 64 245 4 183 6 31 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 344 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> | | | | | | | | • | | | | 23 4 10 1 2 24 8 36 2 6 1 25 13 50 2 10 6 26 21 59 11 36 11 27 29 75 8 57 1 37 1 28 26 207 16 80 77 5 39 72 413 41 136 1 127 5 40 109 676 64 245 4 183 6 31 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 344 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 398 | | | | | | | | | | | | 24 8 36 2 6 1 25 13 50 2 10 6 26 21 59 11 36 11 277 29 75 8 57 1 37 1 28 26 207 16 80 77 5 29 72 413 41 136 1 127 5 30 109 676 64 245 4 183 6 31 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 34 285 1,280 158 923 70 726 19 355 280 1,242 158 874 71 766 21 366 236 998 159 880 96 734 33 < | | | | | _ | | | | | | | 25 13 50 2 10 6 26 21 59 11 36 11 27 29 75 8 57 1 37 1 28 26 207 16 80 77 5 29 72 413 41 136 1 127 5 30 109 676 64 245 4 183 6 31 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 344 285 1,280 158 923 70 726 19 355 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 37 203 851 162 768 78 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></t<> | | | | | | | | - | | - | | 266 21 59 11 36 11 277 29 75 8 57 1 37 1 28 26 207 16 80 77 5 29 72 413 41 136 1 127 5 30 109 676 64 245 4 183 6 31 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 34 285 1,280 158 923 70 726 19 355 280 1,242 158 874 71 766 21 366 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 389 167 513 116 | | | | | | | | | | 1 | | 277 29 75 8 57 1 37 1 28 26 207 16 80 77 5 30 109 676 64 245 4 183 6 31 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 34 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 38 205 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> | | | | | | | | | | , | | 188 26 207 16 80 77 5 199 72 413 41 136 1 127 5 100 109 676 64 245 4 183 6 31 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 34 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 367 203 851 162 768 78 78 685 26 388 205 672 126 662 54 650 26 389 167 513 116 484 50 578 18 | | | | | | | _ | | 1 | 1 | | 199 72 413 41 136 1 127 5 800 109 676 64 245 4 183 6 811 158 1,020 91 386 11 298 15 812 242 1,253 114 730 25 433 17 83 273 1,387 154 860 52 623 10 84 285 1,280 158 923 70 726 19 85 280 1,242 158 874 71 766 21 86 236 998 159 880 96 734 33 87 203 851 162 768 78 685 26 89 167 513 116 484 50 578 18 80 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 | | | | | | | 1 | | | 5 | | 300 109 676 64 245 4 183 6 311 158 1,020 91 386 11 298 15 32 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 34 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 36 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 450 578 18 | | | | | | | _ | | | 7 | | 311 158 1,020 91 386 11 298 15 322 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 344 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 367 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 389 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>35</td></tr<> | | | | | | | | | | 35 | | 312 242 1,253 114 730 25 433 17 33 273 1,387 154 860 52 623 10 34 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 < | | | | | | | | | | 32 | | 33 273 1,387 154 860 52 623 10 34 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50</td> | | | | | | | | | | 50 | | 344 285 1,280 158 923 70 726 19 35 280 1,242 158 874 71 766 21 36 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 | | | | | | | | | | 76 | | 355 280 1,242 158 874 71 766 21 366 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 444 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 | | | | | | | | | | 86 | | 366 236 998 159 880 96 734 33 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>116</td> | | | | | | | | | | 116 | | 37 203 851 162 768 78 685 26 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 | | | | | | | | | | 137 | | 38 205 672 126 662 54 650 26 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 | | | | | | | | | | 161 | | 39 167 513 116 484 50 578 18 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 | | | | | | | | | | 158 | | 40 142 428 115 450 42 506 15 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 < | | | | | | | | | | 208 | | 41 122 308 78 355 15 405 23 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 6 112 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>151</td> | | | | | | | | | | 151 | | 42 113 227 92 261 9 350 13 43 81 189 55 199 4 269 8 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 | | | | | | | | | | 161 | | 43 81 189 55 199 4 269 8 443 81 189 55 199 4 269 8 444 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 55 4 11 2 7 3 < | | | | | | | | | | 143 | | 44 63 152 61 144 7 222 8 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49
29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 2 3 | | | | | | | | | | 98 | | 45 56 131 40 134 204 7 46 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 55 4 11 2 7 3 8 2 56 6 4 2 3 4 2 57 2 5 2 4 2 58 1 1 1 3 56 4 2 3 4 </td <td></td> <td></td> <td></td> <td>189</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>107</td> | | | | 189 | | | | | | 107 | | 36 51 103 31 72 3 159 1 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 6 4 2 3 4 5 57 2 5 2 5 5 5 5 58 2 2 4 2 2 4 2 | 6 | | 63 | | | | 7 | | | 89 | | 47 34 77 28 93 3 154 5 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 4 57 2 5 2 5 5 58 2 2 4 2 59 1 1 1 3 60 1 1 1 3 61 3 | 5 | | 56 | 131 | 40 | | | | | 54 | | 48 23 53 19 58 3 134 6 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 4 5 7 5 5 5< | 5 | | 51 | 103 | | | | | | 53 | | 49 29 59 17 37 6 112 3 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 4 4 57 2 5 2 5 | 3 | | 34 | 77 | | | | | | 35 | | 50 22 46 11 42 7 80 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 4 57 2 5 2 5 5 58 2 2 4 2 5 58 2 2 4 2 2 59 1 1 1 3 3 61 62 3 1 3 3 62 63 3 1 3 3 3 | 2 | | 23 | 53 | 19 | 58 | | | | 41 | | 51 17 37 2 32 7 71 3 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 4 57 2 5 2 5 5 5 58 2 2 4 2 5 5 58 2 2 4 2 3 1 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4< | 2 | | 29 | 59 | 17 | 37 | | | 3 | 22 | | 52 11 32 5 17 8 43 2 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 57 2 5 2 5 58 2 2 4 2 59 1 1 1 2 60 1 1 3 3 61 1 3 3 3 62 63 3 3 3 3 | 2 | | 22 | 46 | 11 | 42 | | | | 16 | | 53 10 25 2 19 8 41 2 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 57 2 5 2 5 58 2 2 4 2 59 1 1 1 2 60 1 1 3 3 61 62 3 1 3 | 1 | | 17 | 37 | 2 | | | | | 6 | | 54 5 20 3 11 3 29 55 4 11 2 7 3 8 2 56 6 4 2 3 4 57 2 5 2 5 58 2 2 4 2 59 1 1 1 2 60 1 1 3 61 1 3 3 62 63 3 4 | 1 | | 11 | 32 | 5 | 17 | | | | 6 | | 55 4 11 2 7 3 8 2 56 6 4 2 3 4 57 2 5 2 5 58 2 2 4 2 59 1 1 1 2 60 1 1 3 61 1 3 3 62 63 3 3 | 1 | | 10 | 25 | 2 | 19 | | | 2 | 6 | | 56 6 4 2 3 4 5 5 5 5 8 2 2 4 2 5 5 9 1 1 1 1 2 2 5 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 | | | 5 | 20 | | 11 | | | | 6 | | 57 2 5 2 5 58 2 2 4 2 59 1 1 1 2 60 1 1 3 51 1 3 62 3 4 | | | 4 | 11 | 2 | | 3 | | 2 | 2 | | 58 2 2 4 2 59 1 1 1 2 60 1 1 3 61 1 1 62 3 4 | | | 6 | 4 | 2 | . 3 | | | | 3 | | 59 1 1 1 1 2
50 1 1 3
51 1
52 53 . | | | 2 | 5 | 2 | | | 5 | | 1 | | 1 1 3
51 1
52
53 . | | | | 2 | 2 | 4 | | 2 | | 1 | | 50 1 1 3
51 1
62
63 . | | | 1 | 1 | 1 | | | | | | | 51 1
52
53 . | | | | | 1 | | | 3 | | | | 62
63 、 | | | | | | | | | | | | 53 、 | 54 | | | | | | | | | | | | | | | | J - # | | | | | | | | Total 3,125 12,656 1,952 9,079 641 8,738 300 | ,12 | 1 3 | 3,125 | 12,656 | 1,952 | 9,079 | 641 | 8,738 | 300 | 2,074 | 1946/47 | | Jul. | Sep. | Oct. | - Dec | Jan | Mar. | Apr | Jun. | |-----------------|------------|----------|-------|-------|-----------|------------|-------|----------| | cm | ST | OB | ST | OB | ST | OB | ST | | | 20 | | | | | | | | | | 21 | | | | | | | | | | 22 | | . 2 | | 2 | | | | | | 23 | | 3 | | 7 | | | | | | 24 | 1 | 16 | 1 | 11 | | 7 | | 1 | | 25 | 4 | 21 | | 40 | 2 | 2 <u>1</u> | 1 | 8 | | 26 | 6 | 27 | 8 | 78 | 3 | 63 | 5 | 17 | | 27 · | 18 | 50 | 20 | 72 | 6 | 109 | 5 | 38 | | 28 | 30 | 92 | 21 | 86 | 16 | 108 | 9 | 60 | | 29 | 48 | 190 | 62 | 94 | 31 | 129 | 18 | 65 | | 30 | 59 | 299 | 77 | 172 | 51 | 121 | 28 | 88 | | 31 | 91 | 487 | 143 | 218 | 92 | 169 | 43 | 105 | | 32 | 162 | 634 | 221 | 369 | 174 | 212 | 56 | 94 | | 33 | 223 | 840 | 301 | 463 | 291 | 323 | 67 | 78 | | 34 | 295 | 820 | 336 | 501 | 374 | 358 | 91 | 76
99 | | 35 | 297 | 805 | 421 | 553 | 441 | 422 | 106 | 109 | | 36 | 299 | 742 | 388 | 554 | 477 | 426 | 100 | | | 37 | 322 | 696 | 462 | . 465 | 464 | 373 | 120 | 126 | | 38 | 310 | 568 | 432 | 488 | 465 | 338 | 107 | 151 | | 39 | 320 | 444 | 413 | 436 | 505 | 302 | | 107 | | 40 | 245 | 349 | 363 | 382 | 415 | 252 | 137 | 114 | | 41 | 265 | 291 | 307 | 350 | 431 | | 106 | 125 | | 42 | 230 | 205 | 296 | 289 | | 212 | 122 | 102 | | 43 | 199 | 155 | 216 | 265 | 309 | 171 | 119 | 82 | | 44 | 160 | 123 | 182 | 270 | 228 | 124 | 129 | 92 | | 45 | 114 | 76 | 179 | 220 | 180 | 94 | 126 | 72 | | 46 | 103 | 70
77 | 153 | 159 | 165 | 87 | 132 | 57 | | 47 | 88 | 67 | 136 | 133 | 146 | 51 | 130 | 45 | | 48 | 57 | 58 | 117 | 110 | 133 | 60
55 | 125 | 54 | | 49 | 5 <i>7</i> | 38 | 111 | 113 | 114
94 | 55 | 123 | 27 | | 50 . | 44 | 40 | 98 | 91 | | 40 | 101 | 32 | | 51 | 37 | 32 | 63 | 70 | 96 | 27 | 94 | 25 | | 52 | 20 | 29 | 54 | 55 | 78
52 | 13 | 69 | 22 | | 53 | 33 | 31 | 52 | 52 | | 31 | 57 | 18 | | 54 | 19 | 22 | 41 | 41 | 40 | 21 | 71 | 22 | | 55 | 17 | 12 | 31 | 37 | 30 | 13 | 60 | 19 | | 56 | 10 | 5 | 30 | | 21 | 12 | 51 | 12 | | 57 | 7 | 9 | 21 | 19 | 18 | 3 | 55 | 6 | | 58 | 2 | 3 | 11 | 18 | 7 | 6 | 31 | 8 | | 59 | 3 | 2 | | 9 | 2 | 1 | 40 | 7 | | 60 ⁻ | 1 | Z | 4 | 7 | 2 | 2 | 19 | 1 | | 61 | 1 | | 5 | 3 | 3. | | 13 | 3 | | 62 | | | 1 | 1 | 1 | | 12 | 1 | | 63 | | | | | | | 5 | | | 64 | | | | | | | 1 | | | 04 | | | | | | | 1 | | | Total | 4,198 | 8,360 | 5,778 | 7,303 | 5,957 | 4,756 | 2,685 | 2,092 | 1947/48 | | Jul. | - | | - Dec. | Jan. | | Apr. | | |-----------|-------|---------------|-------|------------------------------------|-------|--------|-------|-------| | cm | ST | OB | ST | OB | ST | OB | ST | OB | | 20 | • | | | 1 | | | | | | 21 | | 1 | | $egin{array}{c} 1 \ 1 \end{array}$ | | 1 | | | | 22 | | $ rac{1}{2}$ | | 1 | | 2 | 7 | 2 | | 23 | - | | | 2 | - | | 1 | 2 | | 24 | . 1 | 25
70 | 1 | 3 | 1 | 9 | 1 | 6 | | 25 | 8 | 79 | 1 | 27 | | 17 | 3 | 12 | | 26 | 21 | 169 | 8 | 106 | 4 | 51 | - | 22 | | 27 | 44 | 226 | 26 | 246 | 5 | 160 | 7 | 43 | | 28 | 48 | 230 | 73 | 337 | 42 | 390 | 15 | 88 | | 29 | 62 | 230 | 75 | 314 | 38 | 630 | 46 | 218 | | 30 | 82 | 297 | 85 | 309 | 58 | 679 | 71 | 397 | | 31 | 164 | 433 | 79 | 275 | 56 | 517 | 92 | 437 | | 32 | 167 | 462 | 73 | 353 | 116 | 478 | 93 | 372 | | 33 | 203 | 454 | 76 | 385 | 192 | 495 | 50 | 247 | | 34 | 228 | 490 | 91 | 357 | 327 | 497 | 38 | 189 | | 35 | 349 | 504 | 128 | 357 | 446 | 484 | 40 | 165 | | 36 | 350 | 552 | 129 | 322 | 547 | 519 | 59 | 182 | | 37 | 367 | 548 | 153 | 333 | 583 | 528 | 68 | 160 | | 38 | 348 | 495 | 153 | 334 | 607 | 459 | 76 | 167 | | 39 | 370 | 443 | 136 | 301 | 591 | 529 | 53 | 161 | | 40 | 333 | 374 | 128 | 285 | 594 | 459 | 67 | 162 | | 41 | 297 | 308 | 136 | 275 | 518 | 469 | 66 | 187 | | 42 | 227 | 217 | 91 | 207 | 482 | 433 | 55 | 183 | | 43 | 187 | 185 | 94 | 191 | 398 | 373 | 41 | 191 | | 44 | 122 | 114 | 87 | 156 | 331 | 318 | 55 | 120 | | 45 | 90 | 103 | 85 | 92 | 265 | 267 | 28 | 117 | | 46 | 61 | 66 | 70 | 109 | 221 | 210 | 29 | 91 | | 47 | 58 | 56 | 72 | 78 | 193 | 155 | 25 | 71 | | 48 | 54 | 47 | 45 | 67 | 162 | 134 | 19 | 44 | | 49 | 26 | 42 | 51 | 45 | 152 | 109 | 16 | 48 | | 50 | 26 | 36 | 53 | 52 | 120 | 71 | 9 | 40 | | 51 | 17 | 39 | 44 | 29 | 88 | 74 | 4 | 29 | | 52 | 13 | 24 | 49 | 36 | 55 | 44 | 7 | 24 | | 53 | 11 | 21 | 44 | 39 | 51 | 37 | 6 | 15 | | 54 | 10 | 12 | 37 | 30 | 32 | 30 | 1 | . 13 | | 55 | 9 | 13 | 32 | 13 | 14 | 39 | 6 | 12 | | 56 | 3 | 14 | 21 | 21 | 12 | 16 | 3 | 4 | | | 4 | 5 | 18 | 10 | 5 | 14 | 2 | 1 | | 57 | 2 | <i>3</i>
4 | | | 2 | | 2 | 4 | | 58 | 2 | 4 | 25 | 9 | | 10 | 2 | 2 | | 59 | | 1 | 6 | 4 | 1 | 2
2 | 2 | Z | | 60 | | 1 | 4 | 4 | 4 | | 1 | | | 61 | | 3 | 3 | | | 1 | 1 | | | 62 | | | 3 | 0 | | | | | | 63 | | | | 2 | | | | | | 64 | | | • | | | | | | |
Total | 4,362 | 7,324 | 2,484 | 6,115 | 7,313 | 9,712 | 1,156 | 4,226 | 1948/49 | | Jul. | - Sep. | Oct. | | Jan. | | Apr. | | |-------|------|-------------|-------|-------|-----------------|-------|-------|-------| | CIR | ST | OB · | ST | OB | ST | OB_ | ST | OB | | 20 | | | | | | | | | | 21 | | | | | | | | | | 22 | | 1 | 1 | | | | 1 | | | 23 | | 4 | 4 | 5 | 1 | 1 | 1 | 1 | | 24 | 1 | 11 | 7 | 12 | 1 | 3 | | | | 25 | 2 | 15 | 18 | 24 | 4 | 24 | | 1 | | 26 | 5 | 22 | 26 | 44 | 25 | 36 | 3 | 5 | | 27 | 2 | 23 | 51 | 81 | 77 | 109 | 8 | 35 | | 28 | 13 | 70 | 69 | 145 | 140 | 173 | 26 | 120 | | 29 | 30 | 148 | 104 | 159 | 136 | 186 | 47 | 328 | | 30 | 39 | 241 | 151 | 195 | 136 | 216 | 67 | 473 | | 31 | 62 | 296 | 207 | 258 | —— - | 251 | 70 | 506 | | 32 | 51 | 290 | 262 | 303 | 162 | 276 | 56 | 436 | | 33 | 42 | 197 | 256 | 292 | 153 | 264 | 58 | 350 | | 34 | 33 | 144 | 187 | 276 | 152 | 293 | 62 | 274 | | 35 | 32 | 1 41 | 192 | 265 | 156 | 244 | 62 | 271 | | 36 | 30 | 134 | 136 | 190 | 175 | 243 | 72 | 274 | | 37 | 34 | 132 | 119 | 186 | 205 | 246 | 77 | 286 | | 38 | 39 | 118 | 111 | 149 | 236 | 232 | 63 | 262 | | 39 | 48 | 148 | 92 | 134 | 193 | 205 | 61 | 212 | | 40 | 38 | 120 | 86 | 134 | 209 | 210 | 48 | 185 | | 41 | 39 | 91 | 76 | 128 | 187 | 184 | 46 | 186 | | 42 | 30 | 105 | . 70 | 110 | 214 | 180 | 57 | 225 | | 43 | 28 | 63 | 72 | 139 | 167 | 166 | 60 | 202 | | 44 | 24 | 52 | 70 | 153 | 171 | 198 | 60 | 186 | | 45 | 14 | 51 | 64 | 133 | 119
 165 | 59 | 176 | | 46 | 11 | 32 | 49 | 101 | 110 | 141 | 41 | 151 | | 47 | 12 | 18 | 44 | 88 | 98 | 84 | 42 | 108 | | 48 | 6 | 19 | 46 | 62 | 76 | 62 | 48 | 97 | | 49 | 8 | 20 | 45 | 54 | 62 | 53 | 32 | 55 | | 50 | 3 | 7 | 37 | 42 | 48 | 44 | 21 | 45 | | 51 | 6 | 17 | 31 | 34 | 39 | 40 | 20 | 33 | | 52 | 1 | 5 | 20 | 33 | 24 | 28 | 17 | 19 | | 53 | | 8 | 19 | 24 | 20 | 12 | 14 | 16 | | 54 | 2 | 5 | 34 | 22 | 15 | 13 | 16 | 11 | | 55 | | 2 | 16 | 21 | 4 | 8 | 12 | 5 | | 56 | | 2 | 19 | 9 | 6 | 1 | 4 | 6 | | 57 | | 2 | 10 | 16 | 3 - | | 2 | 2 | | 58 | | 1 | 7 | 3 | 4 | | - | 2 | | 59 | | | 6 | 1 | . 1 | 2 | 1 | 1 | | 60 | | | 4 | 1 | $\overline{1}$ | _ | - | _ | | 61 | | | | 2 | _ | | | | | 62 | | | 1 | | | | | | | 63 | | | _ | | | | | | | 64 | | | | | | | • | | | Total | 685 | 2,755 | 2,819 | 4,028 | 3,668 | 4,597 | 1,334 | 5,545 | 1949/50 | | | | | 1949/50 | | | | | |-------|------|-------------|-------|---------|-------|--------|--------|--------| | | Jul. | - | Oct. | - Dec. | Jan. | - Mar. | Apr. | - Jun. | | cm | ST | OB | ST | OB | ST | OB | ST | OB | | 20 | | | _ | | | | 1 | | | 21 | | | 1 | • | | 0 | 1 | | | 22 | | | _ | 2 | | 2 | 2 | | | 23 | | | 3 | 8 | | 3 | 1 | | | 24 . | 2 | 8 | 3 | 18 | 4 | 5 | 9 | 0 | | 25 | 5 | 16 | 21 | 44 | 16 | 10 | 13 | 8 | | 26 | 7 | 51 | 75 | 108 | 34 | 31 | . 29 | 16 | | 27 | 12 | 88 | 148 | 164 | 62 | 113 | 60 | 60 | | 28 | 36 | 255 | 231 | 217 | 113 | 268 | 109 | 114 | | 29 | 68 | 570 | 279 | 312 | 156 | 471 | 154 | 170 | | 30 | 90 | 802 | 395 | 465 | 174 | 516 | 209 | 253 | | 31 | 86 | 919 | 486 | 591 | 206 | 694 | 257 | 313 | | 32 | 65 | 854 | 462 | 564 | 265 | 830 | 282 | 328 | | 33 | 49 | 625 | 456 | 475 | 280 | 873 | 270 | 326 | | 34 | 45 | 533 | 442 | 406 | 242 | 757 | 312 | 325 | | 35 | 32 | 355 | 330 | 313 | 235 | 561 | 270 | 259 | | 36 | 36 | 315 | 236 | 245 | 173 | 399 | 184 | 218 | | 37 | 25 | 326 | 175 | 192 | 143 | 300 | 137 | 148 | | 38 | 28 | 255 | 185 | 153 | 149 | 250 | 94 | 99 | | 39 | 18 | 236 | 177 | 145 | 136 | 196 | 58 | 59 | | 40 | 19 | 199 | 151 | 143 | 118 | 192 | 54 | 46 | | 41 | 11 | 171 | 116 | 119 | 106 | 174 | 42 | 34 | | 42 | 21 | 15 1 | 90 | 98 | 106 | 171 | 36 | 35 | | 43 | 23 | 128 | 63 | 83 | 95 | 149 | 35 | 26 | | 44 | 14 | 127 | 64 | 89 | 88 | 161 | 23 | 24 | | 45 | 12 | 132 | 65 | 70 | 75 | 158 | 19 | 23 | | 46 | 20 | 113 | 73 | 87 | 77 | 147 | 18 | 21 | | 47 | 16 | 98 | 70 | 84 | 65 | 156 | 24 | 19 | | 48 | 17 | 99 | 64 | 63 | 65 | 122 | 21 | 20 | | 49 | 6 | 57 | 47 | 56 | 43 | 93 | 13 | 6 | | 50 | 6 | 57 | 47 | 30 | 39 | 74 | 15 | 3 | | 51 | 7 | 39 | 31 | 33 | 30 | 57 | 10 | 3 | | 52 | | 38 | 21 | 29 | 17 | 29 | 6 | 3 | | 53 | 2 | 29 | 20 | 16 | 6 | 21 | 10 | 1 | | 54 | 1 | 17 | 17 | 14 | 13 | 10 | 3
2 | 1 | | 55 | 1 | 16 | 15 | 11 | 8 | 8 | | 3 | | 56 | | 8 | 10 | 16 | 3 | 4 | 4 | 1 | | 57 | 1 | 6 | 7 | 3 | 2 | 2 | | | | 58 | | 2 | 4 | 3 | 1 | 3 | | | | 59 | | 3 | | 1 | | 1 | | | | 60 | | 2 | | | | | | | | 61 | | 4 | | | | | | | | 62 | | | | | | | | | | 63 | | | | | | | | | | 64 | | | | | | | | | | Total | 781 | 7,704 | 5,080 | 5,470 | 3,345 | 8,011 | 2,787 | 2,965 | 1950/51 | | Jul. | - | 0ct | Dec. | Jan. | Mar. | Apr | Jun | |-------|-------|----------|----------|-------------|-------|-------|------------|------------| | cm | ST | OB | ST | OB | ST | OB | ST | OB | | 20 | | | | | | | | | | 21 | | | | | | 1. | | | | 22 | | | | | 1 | | 1 | | | 23 | | | | | 1 | 2 | 4 | 2 | | 24 | 2 | 1 | 11 | 2 | 7 | 1 | - | | | 25 | 6 | . 7 | 23 | 27 | 23 | 11 | 10 | 5 | | 26 | 28 | 23 | 94 | 89 | 71 | 83 | 28 | 33 | | 27 | 107 | 57 | 229 | 156 | 175 | 181 | 49 | 5 7 | | 28 | 229 | 124 | 433 | 243 | 298 | 332 | 7 5 | 145 | | 29 | 299 | 178 | 582 | 234 | 452 | 391 | 138 | 353 | | 30 | 391 | 266 | 742 | 228 | 477 | 472 | . 180 | 624 | | 31 | 440 | 306 | 845 | 229 | 553 | 582 | 171 | 807 | | 32 | 410 | 538 | 729 | 19 1 | 580 | 509 | 146 | 653 | | 33 | 411 | 279 | 627 | 153 | 502 | 513 | 90 | 567 | | 34 | 378 | | 563 | 142 | 499 | 579 | 88 | 568 | | 35 | 394 | 247 | 473 | 126 | 418 | 505 | 68 | 544 | | 36 | 262 | 202 | 338 | 110 | 344 | 388 | 45 | 420 | | 37 | 254 | 194 | 312 | 79 | 257 | . 328 | 36 | | | 38 | 219 | 158 | 258 | 77 | 253 | 278 | | 340 | | 39 | 146 | 82 | 205 | 47 | 223 | | 45 | 235 | | 40 | 124 | 44 | 174 | 34 | | 249 | 31 | 173 | | 41 | 82 | 41 | 116 | 34
37 | 194 | 162 | 48 | 141 | | 42 | 64 | 27 | 103 | | 188 | 129 | 29 | 92 | | 43 | 52 | 23 | 68 | 34 | 123 | 90 | 22 | 48 | | 44 | 37 | 26 | | 18 | 96 | 77 | 11 | 48 | | 45 | 41 | 22 | 65
64 | 24 | 95 | . 64 | 9 | 35 | | 46 | 28 | 11 | | 17 | 91 | 65 | 5 | 38 | | 47 | 22 | 19 | 46 | 22 | 91 | 81 | 7 | 27 | | 48 | 29 | 9 | 30 | 16 | 85 | 61 | 1 | 29 | | 49 | 16 | 16 | 35 | 20 | 94 | 78 | 3 | 21 | | 50 | 21 | 13 | 30 | 21 | 72 | 72 | . 3 | 24 | | 51 | 21 | | 24 | 17 | 61 | 51 | 2 | 29 | | 52 | 9 | 8
12 | 37 | 15 | 48 | 40 | 1 | 20 | | 53 | | 1.2
4 | 29 | 8 | 38 | 32 | | 21 | | 54 | 12 | - | 24 | 14 | 25 | 24 | | 8 | | 55 | 11 | 3 · | 18 | 9 | 22 | 18 | | 3 | | | 4 | 4 | - 17 | 2 | 7 | 12 | | 6 | | 56 | 2 | 1 | 9 | . 5 | 3 | 5 | | 4 | | 57 | 2 | 1 | 5 | 7 | 5 | 8 | | | | 58 | 1 | 1 | 3 | 4 | 1 | 1 | | 1 | | 59 | 2 | | 3 | | | . 1 | | | | 60 | 1 | | | 2 | 1 | 1 | | | | 61 | | | 1 | | | | | 1 | | 62 | | | 3 | | | | | 1 | | 63 | | | | | | | • | | | 64 | | | | | | | | | | Total | 4,557 | 3,205 | 7,369 | 2,459 | 6,474 | 6,477 | 1,346 | 6,126 | 1951/52 | | | - Sep. | | - Dec. | | - Mar. | _ | - Jun. | |----------|-------|--------|----------------|--------|-------|--------|----------------|--------| | cm | ST | OB | ST | OB_ | ST | OB | ST | OB. | | 20
21 | 1 | | | 1 | | | | | | 22 | 4 | | 1 | 4 | 1 | | 1 | | | 23 | 11 | 1 | 1 | 10 | 1 | 1 | 1 | 1 | | 24 | 54 | 5 | 4 | 32 | 1 | 10 | $\overline{1}$ | - | | 25 | 123 | 26 | 19 | 98 | 11 | 21 | 4 | 8 | | 26 | 250 | 59 | 106 | 224 | 21 | 74 | 6 | 18 | | 27 | 355 | 101 | 218 | 330 | 59 | 233 | 21 | 47 | | 28 | 457 | 197 | 337 | 390 | 119 | 556 | 94 | 89 | | 29 | 628 | 216 | 464 | 435 | 249 | 726 | 212 | 185 | | 30 | 975 | 389 | 617 | 479 | 378 | 1,093 | 328 | 321 | | 31 | 1,173 | 429 | 726 | 573 | 571 | 1,206 | 465 | 375 | | 32 | 1,067 | 364 | 714 | 578 | 673 | 1,385 | 533 | 406 | | 33 | 916 | 267 | 732 | 481 | 748 | 1,300 | 569 | 412 | | 34 | 859 | 215 | 780 | 455 | 708 | 1,258 | 618 | 404 | | 35 | 578 | 169 | 652 | 377 | 735 | 1,077 | 498 | 302 | | 36 | 497 | 131 | 562 | 299 | 754 | 1,053 | 489 | 267 | | 37 | 357 | 81 | 402 | 260 | 655 | 825 | 453 | 251 | | 38 | 293 | 63 | 329 | 193 | 585 | 682 | 378 | 149 | | 39 | 223 | 49 | 332 | 139 | 523 | 546 | 283 | 125 | | 40 | 190 | 33 | 258 | 111 | 427 | 436 | 223 | 110 | | 41 | 131 | 23 | 221 | 91 | 356 | 325 | 196 | 69 | | 42 | 107 | 19 | 171 | 70 | 317 | 271 | 175 | 68 | | 43 | 83 | 10 | 114 | 54 | 233 | 227 | 129 | 43 | | 44 | 59 | 14 | 112 | 46 | 201 | 176 | 140 | 24 | | 45 | 34 | 7 | 74 | 28 | 182 | 164 | 91 | 27 | | 46 | 28 | 7 | 68 | 20 | 138 | 139 | 72 | 16 | | 47 | 19 | 5 | 63 | 26 | 116 | 151 | 59 | 12 | | 48 | 31 | 6 | 37 | 16 | 124 | 133 | 37 | 15 | | 49 | 16 | 5 | 55 | 26 | 150 | 110 | 48 | 16 | | 50 | 18 | 12 | 40 | 12 | 145 | 116 | 41 | 6 | | 51 | 22 | 7 | 48 | 14 | 113 | 77 | 37 | 14 | | 52 | 17 | 4 | 34 | 15 | 72 | 67 | 37 | 8 | | 53 | 15 | • | 34 | 6 | 53 | 60 | 21 | 9 | | 54 | 18 | 4 | 23 | 3 | 27 | 34 | 27 | 8 | | 55 | 16 | 3 | 17 | 2 | 26 | 16 | 17 | 4 | | 56 | 7 | _ | 15 | 3 | 9 | 9 | 6 | 5 | | 57 | 1 | | 3 | 1 | 5 | 10 | 7 | | | 58 | 1 | | | | 2 | 6 | 2 | | | 59 | 1 | | 5 | | 2 | 5 | | | | 60 | _ | | - ' | | 2 | | | | | 61 | | | | | | | | | | 62 | | | | | | | | | | 63 | | | | | | | | | | 64 | | | | | | | | | | Total | 9,635 | 2,921 | 8,388 | 5,902 | 9 492 | 14,577 | 6,321 | 3,814 | 1952/53 | | | - Sep. | | - Dec. | Jan. | | Apr. | - Jun | |----|-------|--------|-----|--------|--------------|------------|------|-------| | cm | ST | OB | ST | OB | ST | OB | ST | OB | | 20 | | | | | | | | | | 21 | | | | | | | | | | 22 | | | | | | | | | | 23 | | | | | | | | | | 24 | | | | 2 | | | | | | 25 | 2 | 5 | 2 | 2 | | 1 | 1 | | | 26 | 7 | 10 | 2 | 7 | 1 | 3 | 7 | 1 | | 27 | 28 | 22 | 18 | 22 | 4 | 16 | 17 | 2 | | 28 | 121 | 99 | 39 | 84 | 7 | 84 | 32 | 30 | | 29 | 292 | 244 | 96 | 204 | 28 | 162 | . 50 | 112 | | 30 | 583 | 494 | 206 | 417 | 54 | 354 | 107 | 276 | | 31 | 921 | 764 | 486 | 569 | 133 | 683 | 125 | 573 | | 32 | 1,034 | 790 | 603 | 615 | 241 | 725 | 177 | 603 | | 33 | 1,123 | 721 | 698 | 520 | 308 | 723
777 | | | | 34 | 1,165 | 676 | 767 | | • | | 219 | 550 | | | | | | 488 | 354 | 745 | 220 | 501 | | 35 | 884 | 462 | 687 | 369 | 355 | 648 | 222 | 370 | | 36 | 704 | 385 | 611 | 250 | 384 | 540 | 210 | 271 | | 37 | 587 | 282 | 591 | 175 | 343 | 390 | 19,7 | 232 | | 38 | 520 | 258 | 429 | 173 | 371 | 355 | 153 | 160 | | 39 | 363 | 186 | 326 | 105 | 332 | 303 | 164 | 145 | | 40 | 260 | 129 | 254 | 98 | 304 | 250 | 155 | 94 | | 41 | 173 | 92 | 190 | 66 | 239 | 185 | 106 | 87 | | 42 | 126 | 68 | 164 | 48 | 216 | 147 | 74 | 82 | | 43 | 97 | 66 | 116 | 47 | 189 | 121 | 72 | 66 | | 44 | 98 | 57 | 108 | 33 | 130 | 95 | 66 | 45 | | 45 | 70 | 43 | 81 | 42 | 131 | 107 | 53 | 44 | | 46 | 76 | 32 | 58 | 16 | 109 | 60 | 59 | 27 | | 47 | 56 | 29 | 43 | 14 | 108 | 59 | 48 | 25 | | 48 | 30 | 30 | 28 | 19 | 79 | 51 | 21 | 15 | | 49 | 39 | 33 | 26 | 22 | 71 | 33 | 24 | 16 | | 50 | 33 | 24 | 27 | 14 | 68 | 35 | 20 | | | 51 | 36 | 19 | 31 | 15 | | | | 10 | | 52 | 22 | 16 | 25 | 11 | 67 | 37 | 11 | 18 | | 53 | 27 | _ | | | 72
5.2 | 22 | 13 | 6 | | | | 9 | 24 | 9 | 52 | 17 | 20 | 3 | | 54 | 24 | 4 | 29 | 5 | 24 | 10 | 16 | 4 | | 55 | 18 | 12 | 17 | 6 | 29 | 7 | 7 | 6 | | 56 | 19 | 7 | 16 | 2 | 19 | 7 | 21 | 3 | | 57 | 8 | 1 | 10 | | 10 | 2 | 5 | 1 | | 58 | 6 | 5 | 7 | 2 | 3 | 2 | | 1 | | 59 | 1 | 1 | 2 | 3 | 2 | 3 | | | | 60 | 3 | | 2 | | 1 | | | | | 51 | 1 | | 1 | | | 1 | | | | 52 | | | | | | | | | | 53 | | | | | | | | | | 54 | | | | | | | | | | | | | | | | | | | 1953/54 | cm | Jul.
ST | - Sep. | Oct.
ST | - Dec.
OB |
Jan.
ST | - Mar.
OB | Apr.
ST | - Jun.
OB | |-------|------------|--------|------------|--------------|------------|--------------|------------|--------------| | 20 | | | | | | | | | | 21 | | | | | | | | | | 22 | | | | | | | | | | 23 | | | | | | | | | | 24 | | | | | 1 | | | | | 25 | | | | | 1 | | | | | 26 | 2 | | | | 1 | 1. | 1 | 4 | | 27 | 6 | | 7 | | 3 | 5 | 2 | 9 | | 28 | 32 | 10 | 21 | . 6 | 9 | 23 | 4 | 16 | | 29 | 95 | 44 | 48 | 37 | 32 | 128 | 14 | 70 | | 30 | 261 | 163 | 176 | 119 | 87 | 423 | 74 | 282 | | 31 | 356 | 381 | 356 | 217 | 191 | 880 | 193 | 650 | | 32 | 406 | 518 | 375 | 279 | 269 | 1,155 | 302 | 888 | | 33 | 374 | 398 | 386 | 268 | 313 | 1,042 | 421 | 1,000 | | 34 | 416 | 287 | 401 | 233 | 348 | 852 | 477 | 863 | | 35 | 304 | 189 | 320 | 183 | 288 | 633 | 380 | 649 | | 36 | 283 | 170 | 249 | 140 | 266 | 435 | 311 | 523 | | 37 | 212 | 128 | 200 | 119 | 256 | 360 | 218 | 347 | | 38 | 175 | 98 | 178 | 103 | 228 | 222 | 179 | 251 | | 39 | 148 | 58 | 120 | 76 | 221 | 192 | 134 | 176 | | 40 | 84 | 44 . | 128 | 65 | 201 | 161 | 145 | 153 | | 41 | 70 | 38 | 103 | 56 | 145 | 129 | 117 | 111 | | 42 | 51 | 26 | 83 | 50 | 142 | 84 | 105 | 83 | | 43 | 47 | 24 | 69 | 31 | 141 | 89 | 90 | 64 | | 44 | 48 | 18 | 56 | 38 | 102 | 80 | 76 | 60 | | 45 | 36 | 13 | 53 | 22 | 106 | 44 | 62 | 60 | | 46 | 26 | 11 | 30 | 26 | 72 | 38 | 64 | 27 | | 47 | 24 | 7 | 30 | 20 | 62 | 50 | 49 | 27 | | 48 | 16 | 6 | 15 | 15 | 58 | 33 | 42 | 24 | | 49 | 13 | 5 | 18 | 24 | 64 | 18 | 46 | 18 | | 50 | 10 | 5 | 15 | 9 | 35 | 17 | 39 | 16 | | 51 | 12 | 6 | 13 | 8 | 41 | 16 | 24 | 8 | | 52 | 5 | 6 | 4 | 8 | 46 | 13 | 25 | 16 | | 53 | 8 | 6 | 10 | 10 | 26 | 15 | 17 | 9 | | 54 | 8 | 6 | 6 | 7 | 21 | | 23 | 9 | | 55 | 7 | 2 | 8 | 3 | 15 | 5 | 14 | 8 | | 56 . | 6 | 1 | 1 | 3 | 12 | 4 | 12 | 8 | | 57 | 3 | 2 | 3 | 2 | 3 | 2 | 6 | | | 58 | 2 | 1 | 2 | | 4 | | 3 | 2 | | 59 | . 1 | | | | 1 | 2 | 2 | 3 | | 60 | | | | | 1 | 2 | 1 | 2 | | 61 | | | | | | | | | | 62 | | | | | | | | | | 63 | | | | | | | | | | 64 | | | | | | | | | | Total | 3,547 | 2,671 | 3,484 | 2,177 | 3,812 | 7,162 | 3,672 | 6,436 | 1954/55 | | | Sep. | | - Dec. | | - Mar. | Apr. | - Jun. | |-----------|----------|-----------|----------|----------|----------|----------|--------|---------| | <u>cm</u> | ST | OB | ST | OB | ST | OB | ST | OB | | 20 | | | | | | | | | | 21 | | | | | | | | | | 22
23 | | | | | | | | | | 24 | | 1 | | | | | | | | 25 | | 1
1 | | 1 | | - | | - | | 26 | | 4 | | $1\\1$ | 1 | 1 | , | 1 | | 27 | 1 | 9 | | . | 1 | 4 | 1 | 1 | | 28 | 10 | 33 | 7 | 11 | 3 | 25 | 1 | 1
18 | | 29 | 18 | 102 | 19 | 47 | 14 | 51 | 8 | 68 | | 30 | 66 | 373 | 63 | 118 | 30 | 125 | 19 | 150 | | 31 | 139 | 845 | 110 | 236 | 50 | 277 | 46 | 219 | | 32 | 239 | 1,393 | 210 | 432 | 91 | 460 | 67 | 314 | | 33 | 308 | 1,404 | 227 | 472 | 97 | 468 | 69 | 366 | | 34 | 355 | 1,329 | 275 | 479 | 115 | 464 | 72 | 369 | | 35 | 303 | 1,027 | 222 | 356 | 97 | 368 | 76 | 252 | | 36 | 234 | 716 | 207 | 239 | 89 | 283 | 76 | 193 | | 37 | 196 | 523 | 176 | 194 | 79 | 232 | 82 | 166 | | 38 | 154 | 336 | 129 | 186 | 70 | 190 | 70 | 94 | | 39 | 126 | 272 | 111 | 115 | 48 | 139 | 51 | 79 | | 40 | 100 | 199 | 90 | 97 | 47 | 126 | 41 | 81 | | 41 | 70 | 169 | 58 | 78 | 38 | 77 | 35 | 50 | | 42
43 | 65 | 123 | 43 | 58 | 27 | 74 | 24 | 41 | | 44 | 56
35 | 119
81 | 56 | 43 | 23 | 51 | 15 | 47 | | 45 . | 40 | 57 | 33
38 | 29
25 | 28 | 63 | 17 | 33 | | 46 | . 36 | 53 | 31 | 32 | 24
26 | 45 | 13 | 31 | | 47 | 39 | 24 | 29 | 20 | 20 | 22
24 | 15 | 20 | | 48 | 31 | 31 | 29 | 9 | 14 | 24
11 | 7
2 | 18 | | 49 | 27 | 20 | 20 | 13 | 16 | 20 | 7 | 14 | | 50 | 25 | 20 | 17 | 14 | 8 | 15 | 4 | 5
5 | | 51 | 11 | 16 | 18 | 12 | 9 | 16 | 3 | 5
2 | | 52 | 12 | 13 | 11 | 7 | 3 | 10 | 3 | 2 | | 53 | 6 | 7 | 9 | 5 . | 6 | 5 | 4 | 1 | | 54 | 13 | · 7 | 8 | 7 | 2 | | 1 | 3 | | 55 | 8 | 4 | 5 | 2 | 2 | 3 | | 1 | | 56 | 5 | 3 | 2 | 3 | 3 | 1 | 2 | 3 | | 57 | 4 | 3
3 · | 1 | • • | 2 | | 2 | 2 | | 58 | 2 | | 2 | - | •• | • | | | | 59 | 1 | 1 | | 1 | | 1 | | 1 | | 60 | 1 | 1 | | 1 | 1 | | | | | 61
62 | | | | | | | | | | 63 | | | | | | | | | | 64 | Total | 2,736 | 9,322 | 2,256 | 3,343 | 1,084 | 3,651 | 833 2 | 2,651 | TABLE B: MARKET MEASUREMENTS OF TIGER FLATHEAD CAUGHT BY BOATS OTHER THAN STEAM TRAWLERS, 1955/56 TO 1966/67 | | | 5/56 | | | | 1956/57 | | | |-------|-------|-------|------------|----------|-------|---------|-------|--------------| | • | Jul | Oct | Jan | Apr | Jul | Oct | Jan | Apr | | cm | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | <u>Jun</u> . | | 20 | | | | | | | | | | 21 | | | | • | | | | | | 22 - | | | - | | | | | | | 23 | | | | | | | | | | 24 | | | | | | | | | | 25 | | | | | 1 | | | | | 26 | | | | | 1 | 2 | 3 | | | 27 | | . 4 | | F | 7 | 2 | 2 | | | 28 | 4 | 8 | 5 | 1
3 | . 4 | 12 | 11 | | | 29 | 20 | 18 | 21 | 36 | 68 | 16 | 40 | 23 | | 30 | 60 | 95 | 98 | 133 | 150 | 56 | 115 | 74 | | 31 | 132 | 136 | 238 | 280 | 309 | 89 | 224 | 176 | | 32 | 238 | 226 | 384 | 387 | 461 | 146 | 366 | 352 | | 33 | 273 | 247 | 504 | 432 | 463 | 160 | 404 | 381 | | 34 | 285 | 259 | 586 | 502 | 505 | 156 | 479 | 422 | | 35 | 209 | 177 | 495 | 478 | 518 | 190 | 496 | 390 | | 36 | 156 | 165 | 434 | 395 | 504 | 193 | 470 | 391 | | | | | | | | | | 350 | | 37 | . 132 | 128 | 365 | 323 | 352 | 169 | 482 | | | 38 | 94 | 99 | 306 | 247 | 259 | 149 | 401 | 329 | | 39 | 68 | 65 | 262 | 201 | 224 | 92 | 303 | 236 | | 40 | 40 | 50 | 202 | 132 | 176 | 82 | 280 | 184 | | 41 | 22 | 37 | 157 | 77 | 151 | 91 | 231 | 168 | | 42 | 15 | 25 | 131 | 9,3 | 109 | 50 | 251 | 170 | | 43 | 17 | 27 | 82 | 57 | 74 | 57 | 213 | 149 | | 44 | 10 | 10 | 5 7 | 29 | 41 | 42 | 184 | 118 | | 45 | 11 | 8 | 42 | 27 | 34 | 31 | 126 | 93 | | 46 | 7. | 11 | 30 | 18 | 24 | 18 | 73 | 73 | | 47 | 5 | 15 | 30 | 16 | 27 | 17 | 71 | 42 | | 48 | 6 | 7 | 25 | 9 | 15 | 17 | 53 | 28 | | 49 | 3 | 6 | 19 | 8 | 12 | 8 | . 48 | 29 | | 50 | 5 | 4 | 18 | 7 | 13 | 4 | 30 | 25 | | 51 | | 1 | 14 | 10 | 8 | 6 | 21 | 16 | | 52 | | 3 | 12 | 8 | 8 | . 6 | 15 | 5 | | 53 | 3 | 1 | 7 | 7 | 6 | 4 | 14 | 14 | | 54 | 2 | 2 | 1 | 3 | 7 | 5 | 12 | 10 | | 55 | 1 | 1 | 3 | 2 | 1 | 2 | 4 | 4 | | 56 | | 6 | 5 | 3 | 3 | 1 | 5 | 1 | | 57 | 1 | 1 | 3 | 1 | 2 | 2 | 4 | 1 | | 58 | _ | _ | 1 | ī | - | _ | i | 2 | | 59 | | 3 | | 1 | | | 1 | 2 | | 60 | | J | | . | 1 | | 1 | 2 | | 61 | | | 1 | | T | | 1 | | | | | | T | | | | T | | | 62 | | | | | | | | | | 63 | | | | | | | | | | 64 . | | | | | _ | | | | | Total | 1,819 | 1,845 | 4,538 | 3,927 | 4,538 | 1,875 | 5,435 | 4,258 | | | 19. | 57/58 | | | | 1958/ | | <u> </u> | |-------------|-------|-------|-------|-------|-------|-------|-------|----------| | | Jul | 0ct | Jan | Apr | Jul | Oct | Jan | Apr | | <u>cm</u> | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | | 20 | | | | | | | | • | | 21 | | | | | | | | | | 22 | | | | | | | | | | 23 | | | | | | | | | | 24 | | | | | | | | | | 25 | | | . 1 | | | | _ | | | 26 | | _ | 1 | | | _ | 1 | _ | | 27 | | | 1 | | 1 | 1 | 3 | 1 | | 28 | | 5 | 7 | | 3 | 2 | 10 | 4 | | 29 | 21 | 38 | 28 | 11 | 25 | 16 | 26 | 13 | | 30 | 57 | 130 | 130 | 57 | 143 | 78 | 155 | 43 | | 31 | 148 | 224 | 274 | 178 | 430 | 189 | 357 | 136 | | 32 | 240 | 295 | 470 | 312 | 700 | 328 | 627 | 214 | | 33 . | 297 | 279 | 480 | 302 | 706 | 348 | 739 | 236 | | 34 | 289 | 272 | 550 | 305 | 684 | 346 | 764 | 251 | | 35 | 239 | 238 | 505 | 318 | 602 | 318 | 644 | 215 | | 36 | 242 | 183 | 438 | 262 | 514 | 275 | 566 | 197 | | 37 | 203 | 175 | 386 | 225 | 410 | 248 | 512 | 153 | | 38 | 186 | 130 | 312 | 180 | 358 | 211 | 442 | 137 | | 39 | 179 | 109 | 305 | 111 | 296 | 176 | 355 | 120 | | 40 | 128 | 79 | 239 | 107 | 207 | 149 | 302 | 108 | | 41 | 100 | 93 | 176 | 94 | 153 | 140 | 256 | . 76 | | 42 | 88 | 78 | 146 | 74 | 120 | 85 | 190 | 77 | | 43 | 94 | 62 | 153 | 58 | 102 | 92 | 149 | 58 | | 44 | 80 | 66 | 132 | 46 | 78 | 91 | 137 | 40 | | 45 | 58 | 59 | 116 | 32 | 73 | 54 | 124 | 43 | | 46 | 45 | 58 | 111 | 31 | 47 | 65 | 104 | 29 | | 47 | 31 | 43 | 82 | 22 | 50 | 55 | 85 | 21 | | 48 | 22 | 42 | 60 | 13 | 24 | 30 | 75 | 17 | | 49 | 20 | 30 | 50 | 8 | 25 | 33 | 50 | 20 | | 50 - | 12 | 23 | 31 | 9 | 21 | 25 | 42 | 17 | | 51 | 13 | 16 | 15 | 9 | 8 | 18 | 29 | 7 | | 52 | 7 | 14 | 21 | 5 | 14 | 16 | 18 | 4 | | 53 | 6 | 12 | 12 | 5 | 13 | 8 | 14 | 4 | | 54 | 3 | 8 | 11 | 5 | 9 | 10 | 4 | 2 | | 55 | 3 | 7 | 4 | 3 | 5 | 8 | 5 | 3 | | 56 | 2 | 2 | 5 | 1 | | 5 | 5 | | | 57 | | 1. | 5 | | | 2 | 3 | | | 58 | 1 | 4 | 2 | | | 2 | 3 | | | 59 | - | 1 | | | | 3 | 1 | | | 60 | 1 | | 1 | | | | | 2 | | 61 | | | | | | | | | | 62 | | | | • | | | 1 | | | 63 | | | | | | | | | | 64 | | | | | | | | | | Total | 2,815 | 2,776 | 5,260 | 2,783 | 5,821 | 3,427 | 6,798 | 2,248 | | | 19 | 59/60 | | | | 1960/ | 61 | | |-------|-------|--------|--------------|-------|-------|----------------|----------------|--------| | | Ju1 | 0ct | | Apr | Ju1 | | · | Apr | | cm | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | | 20 | | | | | | | | | | 21 | | | | | | | | | | 22 | | | | | - | | | | | 23 | | | | | | | | | | 24 | | _ | | | | | | | | 25 | | 1 | _ | | _ | | | | | 26 | | 2
5 | 1 | | 1 | | | | | 27 | | | . 2 | 1 | | | | 1 | | 28 | | 26 | 6 | 1 | 2 | . 4 | 1 | | | 29 | 28 | 60 | 24 | 9 | 9 | 6 | 1 | 1 | | 30 | 180 | 160 | 111 | 43 | 73 | 25 | 16 | 8 | | 31 | 465 | 360 | 400 | 220 | 270 | 110 | 58 | 36 | | 32 | 704 | 633 | .878 | 510 | 703 | 369 | 184 | 122 | | 33 | 717 | 782 | 1,102 | 662 | 818 | 565 | 258 | 147 | | 34 | 684 | 658 | 1,128 | 628 | 905 | 687 | 336 | 196 | | 35 | 513 | 534 | 871 | 572 | 817 | 5 39 | 287 | 175 | | 36 | 499 | 382 | 708 | 434 | 794 | 510 | 307 | 206 | | 37 | 390 | 298 | 526 | 363 | 666 | 408 | 243 | 210 | | 38 | 346 | 223 | 466 | 296 | 538 | 327 | 246 | 219 | | 39 | 290 | 181 | 376 | 183 | 377 | 286 | 224 | 174 | | 40 | 231 | 159 | 331 | 150 | 294 | 207 | 180 | 170 | | 41 | 188 | 142 | 294 | 116 | 240 | 149 | 136 | 153
42	166	110	254	119	190	122	104	136		43	159	92	191	90	181	103	100	120		44	120	52	160	59	123	89	90	63		45	90	40	110	59	77	76	70	61		46	69	66	92	35	69	61	41	49		47	50	42	84	29	60	45	35	39		48	53	35	69	25	33	37	35	. 28		49	51	22	75	22	34	26	29	23		50	27	23	46	14	30	22	27	17		51	35	21	40	19	19	31	18	13		52	32	17	28	7	18	22	17	13		53	26	11	16	4	16	11	16	9		54	11	7	15	2	14	10	3	6		55	10	7	7	1	4	3	9	5		56	8	7	4	_	1	1	5	5 3		57	4	1	4		3	$\overline{1}$, 4	1		58	1	2	1		2	2	5	1		59	_	_	2	2 .	_	_	5 3	_		60			-			1	_			61			1			_				62			-							63										64										Total	6,147	5,161	8,423	4,675	7,381	4,855	3,088	2,405				61/62			·	1962/6				------------	-----------------	-------	-------	-------	-------	--------	-------	-------------			Jul		Jan.−	Apr	Jul		Jan	Apr		cm	Sep.	Dec.	Mar.	Jun.	Sep.	Dec.	Mar.	Jun.		20										21										22										23						•				24										25				•						26										27		1 .								28	1	1	1	1	2			1		29	11	9	11	1	17	4	3	6		30	38	54	60	16	75	48	20	59		31	171	198	165	72	246	202	95	113		32	610	526	435	123	660	493	239	181		33	866	636	518	185	875	692	289	233		34	1,041	679	480	212	1,054	801	370	286		35	872	624	414	194	875	814	319	287		36	75 9	538	437	205	789	752	351	244		3 7	567	377	382	197	617	654	332	247		38	496	257	277	163	485	470	232	239		39	455	193	181	129	450	407	194	215		40	420	167	116	88	278	. 283	166	191		41	380	142	110	82	194	210	134	149		42	287	138	104	61	133	171	97	127		43	237	131	99	59	113	159	78	89		44	161	103	91	46	104	106	64	63		45	148	78	77	21	76	86	66	50		46	114	53	39	28	38	93	46	51		47	83	50	43	28	54	66	42	26		48	74	36	26	18	37	47	32	37		49	49	29	19	17	34	43	30	25		50	48	27	18	7	30	36	19	23		51	42	18	14	10	27	30	12	15		52	18	13	9	7	16	12	18	13		53	14	17	10	4	15	18	29	9		54	15	14	11	4	15	28	8	9		55	7	8	6	3	10	11	11	11		56	3	5	8	,	5	12	12	3		57	5	4	4	2	6	12	5	6		58	1	8	2	1	3	1	1	1		59	1	Ü	1	т.	3	5	1	1		60	1	1	1	1	1	2	1.	1		61		1		Τ.	T	4				62		1								63								1		64		•						Τ												Total	7,994	5,136	4,168	1,985	7,334	6,768	3,315	3,011			196	3/64				1964/6	5.			-----------	-------------	------------	-------------	----------	------------	------------	------------	----------		_	Jul	0ct	Jan	Apr	Jul	•		- Apr		cm	Sep.	Dec.	Mar.	Jun.	Sep.	Dec.	Mar.	Jun.		20										21										22										23										24										25										26		2		•						27	0	2		2				_		28	2	4	17	3	1.0	,	^	1		29	7	22	17	12	10	4	3	1		30	58 107	57 152	68	59	61	36	12	22		31 32·	197	152	183	142	237	181	115	126		33	473 672	309	374	257	697	685	521	540		34	672 791	325	430	197	872	983	737	570		35		369	426 4.75	173	896	984	895	557		36	641	341	475	113	631	658.	709	489		30 37	508 482	267	383	136	508	478	587	466		38	402 431	220	315	122	379	332	416	353		39	431 367	150 151	272 228	99 57	338	231	308	249		40	349	129	181	37 46	279	195	230	161		41	29 <i>7</i>	109	175		220	154	203	106		42	241	109	163	41 38	151 145	148 108	178	65 67		43	180	78	122	30	145	90	161 123	64 48		44	147	70 72	109	26	105	78	96	40 41		45	132	60	91	13	116	76 85	83	34		46	93	30	76	13	77	53	62	30		47	80	46	59	10	45	64	61	21		48	54	48	45	8	31	39	46	24		49	61	24	42	6	37	46	34	15		50	43	39	38	5	29	39	40	23		51	37	16	26	5	15	23	36	9		52	27	21	19	6	19	34	29	10		53	20	14	23	2	18	23	25	18		54	28	9	16	2	12	10	29	6		55	16	8	15		6	8	15	9		56	9	7	4		5	7	11	3		57	5	8	4		3	4	4	4		58	11		2		4	,	5	1		59	1	2	1		1	1	3	2		60		1	1		1	1	1	_		61					i	1				62	1							1		63								_		64	·									Total	6,461	3,201	4,383	1,621	6,095	5,783	5,778	4,069			1965					1966/	67			------------------	-------------	-------	-------	-------	-------	------------------	-------	-------------			Jul	Oct		Apr	Ju1	Oct	Jan			CIN	Sep.	Dec.	Mar.	Jun.	Sep.	Dec.	Mar.	Jun.		20										21										22										23										24										25										26										27										28			1	2	3		1	2		29	5	6	11	6	20	11	13	5		30	17	35	42	45	111	$\frac{11}{114}$	47			31	103	148	168					14		32	375			126	351	375	211	108				470	410	222	750	876	507	197		33	574	513	533	271	791	917	650	263		34	533	493	563	250	702	737	679	252		35	451	380	550	282	577	531	601	288		36.	418	356	428	284	489	373	398	234		37	415	325	381	286	492	279	302	213		38	281	290	308	214	378	216	272	173		39	234	226	262	190	266	193	193	131		40	154	155	228	178	242	164	188	101		41	91	84	158	125	243	142	156	66		42	86	77	105	119	186	108	133	58		43	54	40	70	71	114	73	102	54		44	59	37	72	56	92	54	93	47		45	43	49	48	51	64	45	60	25		46	42	37	41	34	49	24	44	26		47	24	35	24	40	54	28	40	25		48	26	24	21	33	30	33	31	17		49	15	33	22	23	43	12	22	14		50	18	26	18	21	24	30	19	8		51	12	22	13	13	32	10	20	12		52	11	20	8	11	17	. 14	27	6		53	12	12	12	17	12	14	15			54	7	18	2	8	14	15	11	6 7		55	6	. 4	3	8	13					56	10	8	1	3	9	6	9	8		57	4	3	3	. 9	7	5	4	3 5 2		5 <i>7</i> 58	2	3	3	5		6	6	5			1				2	2	2	2		59	Ţ	1		2	1	1		3		60						1		1		61				24						62	-			1			2	1		63	1			1						64				1		 				Total	4,084	3,930	4,506	3,008	6,178	5,409	4,858	2,375	TABLE C: MARKET MEASUREMENTS OF MORWONG CAUGHT BY STEAM TRAWL-ERS (ST) AND OTHER BOATS (OB), 1947/48 TO 1957/58		Jul.	- Sep.	Oct.	1947/4 - Dec.		- Mar.	Apr.	- Jun.		-------	-------	--------	-------	------------------	-------	--------	-------	--------		cm	ST	OB	ST	OB	ST	OB	ST	OB		15										16										17										18										19					3		1	4		20					10		2	8		21	1	3	1		19	3	10	43		22	9	9	10	4	14	1	19	40		23	18	9	42	24	30	1	11	38		24	28	15	76	20	124	3	50	41		25	15	6	74	8	173	5	132	74		26	24	13	81	16	256	11	169	84		27	53	8	114	17	257	4	177	86		28	87	18	211	43	373	10	208	73		29	151	31	257	61	459	4	243	77		30	164	38	301	93	547	8	301	90		31	219	42	325	103	6 20	7	356	121		32	260	52	313	154	529	3	319	124		33	264	67	307	144	467	8	307	127		34	238	61	214	113	379	11	245	84		35	180	43	190	101	314	5	171	59		36	107	42	158	81	231	4	137	35		37	81	34	71	28	146	2	79	32		38	48	16	47	22	90 ∹	7	52	18		39	22	7	32	18	60	2	33	8		40	11	6	10	7	33	1	23	2		41	6	6	4	2	13	1	5			42	1	2	3	3	4		1	1		43	1		3		2		1			44	1		1							45			1							46										47			1							48										Toto1	1,989	528	2,847	1,062	5,153	101	3,052	1,269		1948/4	a		--------	---		--------	---			1948/49										-------	---------	--------	-------	-------	-------	--------	-------	--------	--			Jul.	- Sep.	Oct.		Jan.	- Mar.	Apr.	- Jun.			cm	ST	OB	ST	OB	ST_	OB	ST	OB			15	•					• '-					16											17																																																																																																																																																																																																																																																			
						18								•			19			3								20	1	5	20	2	1						21 ·	13	25	91	5	3		1	1			22	30	42	192	8	20		13	3			23	22	32	202	19	· 65		31	. 7			24	31	24	170	21	120		78	14			25	47	48	202	14	153		139	26			26	89	82	225	22	182		124	39			27	95	94	277	43	273		177	44			28	124	78	253	72	402		236	70			29	143	85	244	87	451		247	77			30	176	159	261	186	463		239	124			31	209	191	312	203	520		249	147			32	190	228	298	273	558		230	134			33	222	184	253	294	399		191	142			34	206	200	221	210	363		151	105			35	157	132	189	163	262		116	65			36	103	. 85	130	107	186		79	42			37	93	59	80	64	130		60	20			3,8	50	32	52	45	74	•	26	· 13			39	· 22	16	22	21	35		16	2			40	11	7	8	14	32		11	1			41	5	5	6	5	11		2	3			42	3	1	2	2	4		3	3			43				2	2			1			44					3			3 2			45				1	1			2			46				1	•						47											48				2				1			Total	2,042	1,814	3,713	1,886	4,713		2,419	1,089			19	49	/	5	0		----	----	---	---	---									1949/50										-----------------	-----------	------------	------------	--------------	------------	--------------	-------	--------------	--			Ju1 ST	Sep. OB	Oct. ST	- Dec. OB	Jan. ST	- Mar. OB	Apr.	- Jun. OB			<u>cm</u> 15	31	OB		OD	21	OD	31	OB										•				16 17											18											19											20	1				20	3	16	6			21	1				30	3	32	14			22	5	7		1	19	5	19	22			23	9	8	7	7	37	4	24	10			24	17	15	11	9	78	20	52	32			25	27	27	18	11	115	29	109	33			26	31	44	37	46	168	48	161	60			27	40	57	51	55	373	88	249	71			28	48	93	50	93	328	109	227	126			29	50	116	61	105	354	88	225	109			30	59	200	74	158	437	89	290	137			31	61	175	81	172	411	79	251	141			32	55	190	94	185	370	64	183	119			33	53	150	92	122	319	74	157	112			34	35	142	98	135	262	56	119	100			35	27	95	74	72	206	43	84	80			36	24	73	49	55	139	31	62	59			37	9	48	44	36	89	20	38	38			38	2	22	22	24	56	9	17	31			39	2	11	13	12	19	8	12	11			40	1	8	5	5	5	7	8	11			41	_	1	6	4	6	2	J	7			42		1	2	2	-	2	. 1	4			43		1			1	_	_				44					1		ė				45											46											47						1					48											 Total	556	1,484	889	1,309	3,843	882	2,336	1,333			10	3 SA	15	1		----	------	----	---		----	------	----	---						19	50/51					-------	------	-------	-------	-------	-------	--------	-------	--------			Jul.	•	0ct		Jan.	- Mar.	Apr.	- Jun.		cm	ST	OB	ST	OB	ST	OB	ST	OB		15										16										17										18					1	1				19						2				20	1	4	5	1	13	3				21	7	68	36	12	17	6	6			22	14	110	108	25	43	7	8	2		23	13	106	221	45	138	18	24	6		24	8	63	187	83	207	23	42	12		25	11	65	123	75	215	30	62	12		26	24	93	104	54	193	19	68	20		27	33	99	104	73	220	22	61	13		28	34	156	148	84	260	23	106	18		29	57	183	141	118	374	35	121	28		30	41	161	158	123	434	32	133	28		31	42	169	151	151	491	42	143	40		32	31	148	136	105	511	34	132	44		33	46	133	112	79	412	24	113	52		34	42	122	148	88	409	25	107	49		35	25	117	107	51	315	15	67	. 39		36	10	82	70	28	237	6	51	44		37	4	58	55	27	175	5	29	9		38	5	38	31	18	132	2	25	8		39	3	26	25	12	93	3	12	3		40		16	8	15	73	4	11	3 2		41		4	9	2	41	1	1			42		2	4	1	17		2			43		. 3	1		10			1		44			1		5			1		45					4					46										47										48										Total	451	2,026	2,193	1,270	5,040	382	1,324	431			1951/52											-------------	----------------	--------	-------	--------	-------	--------	-------	--------	--	--			Jul.	- Sep.	Oct.	- Dec.	Jan.	- Mar.	Apr.	- Jun.				cm	ST	OB	ST	OB	ST	OB	ST	OB				15							-					16							1					17							1					18	1						1					19							1					20	10	•	3				3					21	39		25		7		5	1				22	85	2	65		21	1	18	13				23	100	7	103	9	52	3	40	8				24	68	22	178	30	103	9	76	24				25	56	37	175	31	130	24	169	52				26	59	34	188	36	. 156	35	202	54				27	36	37	178	38	187	40	216	65				28	43	45	184	45	208	57	205	49				29	34	45	150	49	199	34	205	46				30	42	52	169	38	213	50	198	56				31	51	64	174	31	218	45	179	42				32	49	56	181	35	239	55	167	59				33	44	49	151	38	192	36	171	73				34	45	59	185	21	164	33	147	60				35	35	43	117	28	142	33	121	60				36	28	27	89	23	99	21	108	63				37	14	31	75	9	87	14	82	31				38	9	12	52	12	61	11	43	25				39	6	. 6	22	5	38	5	19	.11				40	4	1	20	3	36	6	14	8				41	2	3	7	1	16	2	10	3				42	$\overline{1}$	2	4	1	8		3	2				43		1	1	1	8	1	1					44		-		1	2	_	-					45				_	_		1					46							_					47												48												Total	861	635	2,496	485	2,586	515	2,407	805				1	Q	5	2	1	5	2		---	---	---	---	---	---	---														1952,	/53					-------	-------	-------	-------	--------	-------	--------	-------	-------		····	Jul.			- Dec.		- Mar.	Apr.	- Jun		cm	St	OB	ST	OB	ST	OB	ST	OB		15										16										17										18										19										20		2								21	7	8	2		1					22	23	33	9		5		6			23	34	40	46	10	38	2	4			24	63	47	84	22	91	7	29	3		25	91	85	166	35	170	25	54	11		26	95	97	229	40	253	22	110	22		27	116	144	234	43	307	43	160	50		28	111	140	313	58	310	52	204	85		29	101	170	287	83	302	49	217	88		30	111	152	270	93	284	47	231	126		31	87	160	279	93	270	52	219	83		32	102	162	251	90	231	29	189	75		33	84	121	224	80	226	28	178	63		34	82	108	205	66	188	25	140	73		35	61	65	168	43	148	18	108 ·	52		36	46	49	116	31	110	17	89	38		37	39	28	87	18	94	12	57	29		38	27	11	65	7	75	. 6	39	18		39	18	7	47	4	55	- 6	24	9		40	13	3	33		37	1	22	4		41	9	2	16	3 2	20	2	15	1		42	2	1	8		10	1	2	. 3		43		1			6		2			44			2	•	3					45		1			1					46					1					47										48		1								Total	1,322	L,638	3,141	821	3,236	444	2,099	833	-3- 1053/5/					1953/	′54					-----------	-----------------	--------	-------	--------	-------	--------	-------	--------		· · · · ·		- Sep.	Oct.	- Dec.	Jan.	- Mar.	Apr.	- Jun.		cm	ST	OB	ST	OB	ST	OB	ST	OB		15										16										17										18	•									19										20							1			21	1	1					5	2		22	4	3	2	1	3		8	4		23	5	1	10	6	8		15	6		24	6	9	5	8	12		28	8		25	17	9	17	10	27		41	6		26	38	22	44	16	50		65	12		27	67	36	86	36	109		144	14		28	82	50	109	61	163		254	32		29	134	54	129	63	252		341	35		30	149	75	151	96	265		426	49		31	164	73	140	87	255		377	43		32	127	59	125	84	239		326	46		33	112	69	114	95	173		229	40		34	107	59	84	74	156		176	39		35	100	37	78	59	113		138	30		36	69	22	64	39	114		118	27		37	50	16	55	42	84		96	9		38	30	25	38	20	85		52	6		39	21	13	27	12	54		33	7		40	$\overline{14}$	8	23	12	41		31	5		41	4	2	11		30		9	5 3		42	1	1	3	3	23		5	2		43	1	1		3	10		1			44	2	_		_	6		2			45	1				3					46										47										48							
	Total	1,306	645	1,315	827	2,275		2,921	425		1	Q	5/4	1	5	ζ		---	---	-----	---	---	---													1954	/55					-------	---------------------	--------	---------------	--------	---------------------	--------	-------	--------			Jul.	- Sep.	Oct.	- Dec.	Jan.	- Mar.	Apr.	- Jun.		cm	ST	OB	\mathtt{ST}	OB	ST	OB	ST	OB		15						•				16										17										18										19										20						1				21	2	4		. 2	. 2	5	2	4		22	13	14	4	6	8	6	17	5		23	18	9	13	17	56	9	75	30		24	23	21	21	34	125	17	171	56		25	26	24	46	13	150	18	255	118		26	31	25	58	25	165	14	264	105		27	74	36	78	23	222	14	195	73		28	94	58	103	45	293	18	175	83		29	149	71	133	84	444	23	261	80		30	176	90	139	114	476	49	378	191		31	174	94	136	132	454	71	476	231		32	166	82	103	124	374	54	480	217		33	144	74	76	106	327	59	408	220		34	121	50	81	. 90	317	47	328	146		35	96	59	82	62	233	35	270	136		36	77	40	58	44	217	20	197	108		37	41	25	39	28	166	14	153	83		38	79	18	28	9	125	11	103	45		39	31	17	25	6	88	5	61	42		40	22	14	6		65	3	38	22		41	19	8	9	2 2	37		16	4		42	10	2	5		29		7	3		43	3	3	2		23		7	2		44				•	12		3			45	2				5		2			46	1				1		1			47	1				1					48		-								Total	1,592	838	1,245	968	4,415	493	4,343	2,004			1955/56												-------	---------	--------	--------	--------	-------	--------	-------	--------	--	--	--			Jul.	- Sep.	Oct.	- Dec.	Jan.	- Mar.	Apr.	- Jun.					cm	ST	OB	ST	OB	ST	OB	ST	OB					15													16													17													18													19													20	2	7			1								21	5	16		3	10		2	5					22	10	48		12	12		4	16					23	43	75	8	41	46	4	17	56					24	69	91	21	78	91	18	59	123					25	119	202	29	138	148	31	91	190					26	197	243	55	187	188	41	170	258					27	188	223 .	59	197	248	52	205	234					28	122	161	64	226	312	62	195	254					29	108	139	70	169	270	56	205	210					30	143	217	85	220	375	70	237	239					31	159	272	93	256	344	51	241	206					32	174	337	91	340	310	29	242	197					33	157	320	104	322	278	39	218	225					34	158	252	94	301	214	35	171	161					35	165	166	55	202	154	30	136	160					36	131	124	49	146	137	28	103	128					37	118	86	33	105	112	12	73	102					38	82	59	22	49	105	4	54	61					39	59	21	16	29	64	8	25	29					40	42	15	15	13	49	6	18	25					41	7	5	6	9	38	1	13	7					42	13	5		1	24	1	4	2					43	3	1	3 3		17	2	1	1					44	1	1	1		11	2							45	1				2								46													47													48													Total	2,276	3,086	976	3,044	3,560	582	2,484	2,894						1956/57											-------	---------	--------	------	-------	-------	--------	-------	---------	--	--			Jul.	- Sep.	Oct.		Jan.	- Mar.	Apr.	- Jun.				cm_	ST	OB	ST	OB	ST	OB	S T	OB				1.5												16						•						17												18	1											19	1	•										20												21		3		1	1		1					22	3	29	1	4	5	2		1				23	10	67	12	37	19	13	1	1				24	18	104	41	49	53	16	22	13				25	35	181	41	68	96	33	63	22				26	44	253	54	116	131	42	122	63				27	61	321	79	128	173	65	209	82				28	64	318	83	142	237	49	307	73				29	53	286	87	114	275	64	272	84				30	94	308	113	159	294	50	329	82				31	59	268	86	137	220	29	209	67				32	65	319	89	130	166	25	186	73				33	71	263	64	129	157	19	186	84				34	77	248	49	130	100	26	168	72				35	69	221	63	106	85	12	159	76				36 ·	72	149	45	95	77	3	142	40				37	50	109	24	65	50	5	84	28				38	50	67	25	37	31	1	54	15				39	30	43	12	24	23	1	31	13				40	17	23	15	16	10	1	22	4				41	5	9	5	6	6		14	4				42	5	6	7	3	5		2	1				43	2	2		3			1	1				44	1	1			2							45							1					46	1	1										47												48												Total	958	3,599	995	1,699	2,216	456	2,585	 899					1957/58											--------------	---------	-------	----------------	--------	---------	--------	-------	--------	--	--			Jul.	•	Oct.	- Dec.	Jan.	- Mar.	Apr.	- Jun.				cm.	ST	OB	ST	OB	ST	OB	ST	· OB				15					<u></u>							16												17												18 ·												19												20												21	3	1	2			1		3				22	1	7	3	1	3		1	3				23	6	17	2	1	10	14	4	4				24	20	23	13	14	14	10	15	7				25	38	50	11	19	18	29	43	18				26	67	116	24	21	24	28	44	19				27	82	205	35	52	51	52	58	30				28	109	223	52	108	81	109	86	55				29	111	211	66	137	157	152	139	110				30	91	229	65	194	182	171	181	132				31	61	166	47	163	177	126	189	127				32	57	177	54	146	157	105	183	122				33	55	147	47	150	144	77	145	109				34	67	117	38	131	136	69	121	84				35	65	93	29	111	117	71	109	98				36	53	73	31	85	89	47	95	70				37	36	52	29	53	88	37	80	50				38	21	37	14	45	65	22	56	27				39	10	22	11	22	48	7	32	19				40	6	11	6	13	25	8	23	9				41	6	7	2	8	13	2	9	6				42	1	4	$\overline{1}$	3	12	3	8	2				43	1	3		1	3	_	. 4	1				44		1		_	2	1	,	1				45				1	2	_		-				46	1			_	_							47												48												——— Total	968	1,992	582	1,479	1,618	1,141	1,625	1,106			TABLE D: MARKET MEASUREMENTS OF MORWONG CAUGHT BY BOATS OTHER THAN STEAM TRAWLERS, 1958/59 TO 1966/67		195	8/59				1959/60	<u> </u>			-------	-------	-------	--------	-------	-------	---------	----------	-------			Jul	0ct	Jan	Apr	Jul	0ct	Jan	Apr		cm	Sep.	Dec.	Mar.	Jun	Sep.	Dec.	Mar.	Jun.		15										16										17										18										19										20	3	1		1		2	6	1		21	13	4	1		5	19	9	5		22	24	14	2	9	21	27	27	15		23	34	21	11	12	31	46	51	29		24	42	55	13	30	56	66	64	44		25	68	52	36	77	79	81	80	78		26	108	57	42	87	107	92	93	84		27	169	66	46	103	144	104	103	72		28	182	100	79	156	192	143	113	87		29	215	126	98	170	. 178	138	161	100		30	366	137	121	252	296	179	196	126		31	331	125	147	239	294	209	233	145		32	270	141	132	263	348	229	210	182		33	218	106	136	254	256	213	218	178		34	183	92	111	192	222 -	164	165	151		35·	122	74	76	149	167	140	109	136		36	106	58	85	133	142	104	80	134		37	58	42	55	103	77	65	62	87		38	39	24	43	66	59	44	34	62		39	29	18	32	48	40	32	17	30		40	16	17	14	15	22	18	12	19		41	15	7	4	15	11	13	9	13		42	3	. 3	6	9	4	1	3	7		43	1	2	1	3	8	1	2	2		44	1		1	1		1				45				,				1		46										47										48										Total	2,616	1,342	-1,292	2,387	2,759	2,131	2,057	1,791			1960	0/61				1961/62				-------	-------	-------	------	-------	-------	---------	----------	-------			Jul	Oct	Jan	Apr	Jul	Oct	Jan	Apr		cm	Sep.	Dec.	Mar.	Jun.	Sep.	Dec.	Mar.	Jun.		15										16										17	•					•				18										19										20	3	1.								21	6	5	1	3	4	1				22	48	9	4	17	19	3	. 6	4		23	84	43	7	38	69	9	17	4		24	127	81	10	65	158	22	32	12		25	151	95	19	105	201	51	59	30		26	187	119	30	130	262	70	125	62		27	267	178	35	132	288	94	182	113		28	264	202	40	158	280	103																											
169 | 153 | | 29 | 235 | 205 | 40 | 188 | 274 | 98 | 158 | 185 | | 30 | 308 | 261 | 56 | 278 | 406 | 125 | 176 | 199 | | 31 | 294 | 284 | 64 | 226 | 394 | 196 | 198 | 193 | | 32 | 304 | 304 | 62 | 249 | 414 | 188 | 253 | 222 | | 33 | 285 | 303 | 116 | 227 | 389 | 181 | 236 | 211 | | 34 | 282 | 310 | 87 | 230 | 402 | 205 | 222 | 264 | | 35 | 257 | 238 | 76 | 194 | 346 | 161 | 182 | 204 | | 36 | 182 | 219 | 78 | 154 | 243 | 125 | 193 | 177 | | 37 | 119 | 143 | 53 | 127 | 162 | 103 | 117 | 132 | | 38 | 72 | 102 | 34 | 86 | 102 | 81 | 100 | 93 | | 39 | 38 | 67 | 9 | 47 | 55 | 38 | 47 | 75 | | 40 | 23 | 51 | 12 | 39 | 40 | 26 | 25 | 42 | | 41 | 13 | 13 | 8 | 20 | 20 | 15 | 19 | 26 | | 42 | 10 | 10 | - 3 | 8 | . 8 | 10 | 9 | 14 | | 43 | | 5 | 3 | 3 | 4 | 9 | 8 | 17 | | 44 | 1 | 1 | | 4 | 4 | 1 | 3 | 7 | | 45 | | 2 | | 1 | i | _ | 1 | 3 | | 46 | 1 | | | 1 | 1 | | - | J | | 47 | | | | | _ | | | | | 48 | | | | | | | | | | Total | 3,561 | 3,251 | 847 | 2,730 | 4,546 | 1,915 | 2,537 | 2,442 | | | 196 | 2/63 | | | | 1963/64 | | | |-----------|-------|-------|-------|-------|-------|---------|-------|-------| | | Jul | Oct | Jan | Apr | Ju1 | 0ct | Jan | Apr | | cm | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | | 15 | | | | | | 2 | | | | 16 | | | | | | 2 | | | | 17 | | | | | | 3 | | | | 18 | | | | | | 3 | 1 | | | 19 | | | | | | 3 | 1 | | | 20 | | | 1 | | | 8 | | 1 | | 21 | 5 | 4 | 4 | | 2 | 8 | 5 | 1 | | 22 | 17 | 13 | 12 | 7 | 6 | 47 | 24 | 10 | | 23 | 40 | 35 | 13 | 17 | 39 | 73 | 49 | 20 | | 24 | 47 | 62 | 29 | 62 | 86 | 151 | 77 | 75 | | 25 | 80 | 79 | 43 | 73 | 188 | 240 | 114 | 110 | | 26 | 179 | 143 | 56 | 97 | 272 | 416 | 158 | 172 | | 27 | 305 | 250 | 104 | 168 | 273 | 419 | 183 | 294 | | 28 | 398 | 419 | 176 | 263 | 303 | 504 | 340 | 448 | | 29 | 494 | 553 | 230 | 381 | 416 | 575 | 395 | 501 | | 30 | 512 | 571 | 309 | 399 | 468 | 652 | 498 | 581 | | 31 | 410 | 548 | 267 | 368 | 456 | 645 | 569 | 555 | | 32 | 424 | 551 | 294 | 359 | 447 | 610 | 574 | 601 | | 33 | 422 | 532 | 287 | 371 | 374 | 551 | 642 | 548 | | 34 | 419 | 473 | 293 | 283 | 331 | 459 | 548 | 427 | | 35 | 343 | 463 | 229 | 239 | 323 | 369 | 436 | 350 | | 36 | 251 | 354 | 185 | 178 | 218 | 307 | 320 | 252 | | 37 | 195 | 271 | 130 | 140 | 146 | 285 | 212 | 200 | | 38 | 129 | 147 | 92 | 84 | 98 | 188 | 122 | 110 | | 39 | 70 | 92 | 43 | 40 | 73 | 117 | 81 | 71 | | 40 | 44 | 67 | 27 | 36 | 52 | 67 | 50 | 43 | | 41 | 24 | 35 | 12 | 15 | 35 | 53 | 20 | 25 | | 42 | 10 | 18 | 8 | 10 | 13 | 35 | 7 | 16 | | 43 | 4 | 8 | 5 | 4 | 5 | 5 | 4 | 8 | | 44 | 2 | 2 | 2 | 3 | 4 | 7 | 3 | | | 45 | 1 | 1 | 1 | | 2 | | | 2 | | 46 | | 3 | 3 | | 1 | | | 1 | | 47 | | | | | | | | • | | 48 | | | | | | | | | | Total | 4,825 | 5,694 | 2,855 | 3,597 | 4,631 | 6,802 | 5,433 | 5,422 | | | | | | | | .965/66 | /66 | | | |-------|-------|-------|-------|-------|-------|---------|-------|-------|--| | | Jul | 0ct | Jan | Apr | Jul | 0ct | Jan | Apr | | | cm | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | | | 15 | | - | | | | | | | | | 16 | • | | | | | | | | | | 17 | | | | | | | | | | | 1٤ | | | | | | | | | | | 19 | | | | | · | | | | | | 20 | | | 2 | | | | | | | | 21 | | 1 | 1 | | | | | | | | 22 | 5 | 12 | 1 | | 9 | 9 | | | | | 23 | 20 | 17 | 7 | 4 | 14 | 25 | 4 | 6 | | | 24 | 77 | 83 | 15 | 9 | 38 | 41 | 16 | 17 | | | 25 | 173 | 161 | 29 | 28 | 57 | 70 | 27 | 35 | | | 26 | 303 | 302 | 107 | 94 🖫 | 111 | 88 | 48 | 68 | | | 27 | 451 | 508 | 163 | 223 | 215 | 159 | 72 | 104 | | | 28 | 562 | 654 | 265 | 339 | 333 | 248 | 120 | 149 | | | 29 | 631 | 772 | 374 | 515 | 459 | 369 | 176 | 279 | | | 30 | 609 | 832 | 476 | 553 | 529 | 387 | 261 | 365 | | | 31 | 630 | 803 | 477 | 628 | 553 | 409 | 310 | 510 | | | 32 | 531 | 752 | 526 | 612 | 461 | 450 | 305 | 489 | | | 33 | 512 | 711 | 469 | 499 | 427 | 391 | 293 | 459 | | | 34 | 397 | 587 | 399 | 326 | 293 | 317 | 267 | 369 | | | 35 | 342 | 515 | 282 | 285 | 205 | 237 | 233 | 290 | | | 36 | 303 | 438 | 195 | 216 | 181 | 150 | 181 | 193 | | | 37 | 197 | 271 | 125 | 131 | 134 | 123 | 143 | 113 | | | 38 | 123 | 170 | 74 | 67 | 90 | 6,7 | 111 | 91 | | | 39 | 78 | 115 | 42 | 57 | .46 | 37 | 64 | 35 | | | 40 | 32 | 75 | 22 | 22 | 35 | 23 | 50 | 23 | | | 41 | 20 | 35 | 7 | 24 | 1.5 | 12 | 19 | 18 | | | 42 | 26 | 20 | 8 | 8 | . 6 | 16 | 16 | 7 | | | 43 | 8 | 8 | 1 | 9 | 4 | 10 | 2 | 6 | | | 44 | 4 | 8 | 1 | 3 | 4 | 4 | 4 | 1 | | | 45 | 1 | 2 . | | | | 4 | | | | | 46 | · 2 | | | | | | | | | | 47 | | | | | | 1 | | | | | 48 | | | | | | | | | | | Total | 6,037 | 7,852 | 4,068 | 4,652 | 4,219 | 3,647 | 2,722 | 3,627 | | | | 1966 | /67 | | | |-------|-------|-------|-------|-------| | | Jul | Oct | Jan | Apr | | cm | Sep. | Dec. | Mar. | Jun. | | 15 | | | | | | 16 | | | | | | 17 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | | | | 21 | 3 | 8 | 1 | • | | 22 | 18 | 36 | 7 | | | 23 | 47 | 94 | 34 | 2 | | 24 | 69 | 127 | 63 | 7 | | 25 | 90 | 175 | 94 | 28 | | 26 | 224 | 246 | 85 | 47 | | 27 | 429 | 383 | 134 | 75 | | 28 | 502 | 543 | 188 | 110 | | 29 | 591 | 614 | 296 | 165 | | 30 | 731 | 709 | 425 | 216 | | 31 | 797 | 643 | 446 | 245 | | 32 | 763 | 717 | 532 | 253 | | 33 | 660 | 644 | 453 | 245 | | 34 | 510 | 507 | 329 | 218 | | 35 | 373 | 367 | 247 | 171 | | 36 | 247 | 262 | 181 | 123 | | 37 | 160 | 181 | 120 | 96 | | 38 | 103 | 119 | 72 | 64 | | 39 | 54 | 67 | 47 | 31 | | 40 | 28 | 49 | 36 | 30 | | 41 | 23 | 23 | 16 | 15 | | 42 | 8 | 11 | 10 | 8 | | 43 | 5 | 9 | 3 | 3 | | 44 | 2 | 4 | 2 | 2 | | 45 | | 4 | 1 | 1 | | 46 | | | | 2 | | 47 | | | 1 | | | 48 | | | | | | Total | 6,437 | 6,542 | 3,823 | 2,157 | TABLE E: MARKET MEASUREMENTS OF REDFISH CAUGHT BY STEAM TRAWL-ERS (ST) AND OTHER BOATS (OB), 1947/48 TO 1958/59 | | 1947/48 | | | | | | | | | |-------|---------|------------------|-------|------|---------|-------|------|--|--| | | Jul | Sep. | Oct | Dec. | Jan Mar | | Jun. | | | | cm | ST | OB | ST | ОВ | ST OB | ST | OB | | | | 12 | | | | | | 1 | | | | | 13 | | | | | | | | | | | 14 | | | | | | | | | | | 15 | | | | | | | | | | | 16 | | | | | | 3 | | | | | 17 | 6 | | 1 | | | 10 | | | | | 18 | 10 | | | 1 | | 24 | 1 | | | | 19 | 19 | 4 | 10 | 1 | 2 | 73 | 1 | | | | 20 | 76 | 7 | 81 | 14 | 8 | 178 | 6 | | | | 21 | 159 | 32 | 185 | 42 | 61 | 313 | 27 | | | | 22 | 310 | 57 | 382 | 31 | 199 | 506 | 34 | | | | 23 | 449 | 60 | 492 | 17 | 275 | 644 | 55 | | | | 24 | 566 | 43 | 446 | 5 | 345 | 660 | 42 | | | | 25 | 520 | 21 | 354 | 2 | 388 | 658 | 24 | | | | 26 | 418 | 18 | 247 | 1 | 359 | 597 | 12 | | | | 27 | 263 | 3 | 186 | 1 | 306 | 544 | 13 | | | | 28 | 161 | 2 | 117 | | 228 | 355 | 1 | | | | 29 | 55 | 2 | 57 | | 130 | 227 | 2 | | | | 30 | 23 | | 45 | | 110 | 115 | | | | | 31 | 7 | | 26 | | 73 | 49 | | | | | 32 | 2 | | 11 | | 40 | 13 | | | | | 33 | 1 | | 3 | | 27 | 4 | | | | | 34 | | | 1 | | 15 | 1 | | | | | 35 | | | | | 3 | 1 | | | | | 36 | | | | | 1 | | | | | | 37 | | | | | | | | | | | Total | 3,045 | 249 [.] | 2,644 | 115 | 2,570 | 4,976 | 218 | | | | | Jul | Sep. | Oct. | - Dec. | | - Mar. | Apr | - Jun. | |-------|--------|------|--------|--------|-------|--------|--------|--------| | cm | ST | OB | ST | OB | ST | OB | ST | OB | | 12 | | | | | | | | | | 13 | | | | | | | | • | | 14 | | | | | | | 4 | | | 15 | | | | | | | 5 | | | 16 | 1 | 1 | 1 | | | | 14 | | | 17 | 3 - | | 4 | 1 | . 1 | | 40 | 2 | | 18 | 29 | 6 | 24 | 16 | 14 | | 127 | 2 | | 19 | 139 | 24 | 164 | 70 | 44 | | 487 | 7 | | 20 | 513 | 42 | 732 | 225 | 144 | | 960 | 18 | | 21 | 1,457 | 53 | 1,834 | 583 | 404 | | 1,869 | 42 | | 22 | 2,588 | 60 | 2,515 | 694 | 598 | | 2,106 | 42 | | 23 | 3,195 | 65 | 2,161 | 466 | 567 | | 1,652 | 25 | | 24 | 2,895 | 50 | 1,627 | 205 | 4 39 | | 1,242 | 7 | | 25 | 1,948 | 40 | 974 | 81 | 280 | | 739 | 3
1 | | 26 | 1,114 | 32 | 508 | 27 | 179 | | 484 | 1 | | 27 | 554 | 30 | 227 | 8 | 105 | | 355 | | | 28 | 253 | 11 | 79 | 1 | 49 | | 202 | 1 | | 29 | 143 | 6 | 34 | | 31 | | 78 | | | 30 | 43 | 1 | 10 | | 19 | | 38 | | | 31 | 23 | 2 | 2 | | 7 | • | 19 | | | 32 | 3 | | | | 3 | • | 6 | | | 33 | 3 | | | | 1 | | 6 | | | 34 | | | | | | | | , | | 35 | | | | | | | 1 | | | 36 | | | | | | | - | | | 37 | | | | | | | | • | | Total | 14,904 | 423 | 10,896 | 2,377 | 2,885 | | 10,434 | 149 | 10/0/50 | | | | ٠ | 1949/5 | 0 | | | | |-------|---------------|------|--------|--------|-------|------|--------|-----| | | Jul | Sep. | Oct. | - Dec. | Jan | Mar. | Apr | Q | | cm | \mathtt{ST} | OB | ST | OB | ST | OB | ST | OB | | 12 | | | | | | | | | | 13 | | | | | | | | | | 14 | | | 1 | | 1 | | | • | | 15 | | 1 | 5 | | | | 2 | | | 16 | 7 | 2 | 10 | | 6 | | 26 | 1 | | 17 | 35 | 3 | 62 | 3 | 12 | | 38 | 5 | | 18 | 71 | 6 | 159 | 3 | 32 | | 118 | 16 | | 19 | 183 | 13 | 569 | 33 | 79 | 1 | 274 | 12 | | 20 | 518 | 37 | 1,588 | 122 | 257 | 3 | 734 | 28 | | 21 | 1,353 | 61 | 3,200 | 384 | 632 | 15 | 1,524 | 62 | | 22 | 2,314 | 70 | 4,035 | 527 | 780 | 28 | 2,016 | 114 | | 23 | 2,482 | 64 | 3,163 | 454 | 656 | 33 | 1,722 | 139 | | 24 | 1,936 | 35 | 2,042 | 255 | 491 | 33 | 1,277 | 143 | | 25 | 1,142 | 25 | 850 | 102 | 253 | 11 | 889 | 96 | | 26 | 569 | 16 | 331 | 44 | 135 | 4 | 594 | 52 | | 27 | 380 | 9 | 131 | 21 | 87 | 1 | 376 | 39 | | 28 | 212 | 3 | 54 | 10 | 65 | | 232 | 12 | | 29 | 109 | 1 | 17 | 3 ′ | · 45 | | 114 | 6 | | 30 | 40 | | 2 | | 21 | | 41 | 1 | | 31 | 18 | | 1 | | 8 | | 16 | 1 | | 32 | 5 | | 1 | | 6 | | 2 | | | 33 | 2 | | | | 6 | | 4 | | | 34 | 1 | | | | | | 2 | | | 35 | | | | | | | | | | 36 | | | | | | | | | | 37 | | | | | | | | | | Total | 11,377 | 346 | 16,221 | 1,961 | 3,572 | 129 | 10,001 | 727 | | | 1950/51 | | | | | | | | | | | | | |-------|---------|--------|-------|--------|---------|--------|---------|--------|--|--|--|--|--| | | Jul | - Sep. | Oct. | - Dec. | O tarri | - Mar. | 11P - 1 | - Jun. | | | | | | | cm | ST | OB | ST | OB | ST | OB | ST | OB | | | | | | | 12 | - | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 14 | | | | 1 | | | | 1 | | | | | | | 15 | . 4 | | 1 | 1 | | | 2 | 2 | | | | | | | 16 | 5 | 1 | 3 | 3 | 2 |
 19 | 7 | | | | | | | 17 | 17 | 13 | 8 | 14 | 5 | | 46 | 12 | | | | | | | 18 | 81 | 32 | 16 | 49 | 16 | | 122 | 36 | | | | | | | 19 | 198 | 45 | 61 | 94 | 54 | | 211 | 77 | | | | | | | 20 | 386 | 95 | 171 | 363 | 53 | | 355 | 90 | | | | | | | 21 | 790 | 217 | 595 | 1,048 | 84 | | 391 | 100 | | | | | | | 22 | 1,126 | 261 | 1,099 | 1,251 | 94 | | 379 | 144 | | | | | | | 23 | 1,218 | 172 | 1,096 | 802 | 83 | | 385 | 185 | | | | | | | 24 | 1,072 | 77 | 981 | 359 | 62 | | 451 | 220 | | | | | | | 25 | 717 | 21 | 511 | 99 | 55 | | 446 | 151 | | | | | | | 26 | 346 | 10 | 228 | 37 | 18 | | 436 | 85 | | | | | | | 27 | 239 | 2 | 120 | 41 | 6 | | 384 | 44 | | | | | | | 28 | 115 | 4 | 74 | 1 | , 4 | | 275 | 19 | | | | | | | 29 | 54 | | 46 | | 1 | | 185 | 3 | | | | | | | 30 | 13 | 1 | 22 | | | | 99 | 1 | | | | | | | 31 | 8 | | 14 | | | | 51 | | | | | | | | 32 | 1 | | 5 | | | | 24 | | | | | | | | 33 | | | 1 | | | | 6 | | | | | | | | 34 | 1 | | 1 | | | | 1 | | | | | | | | 35 | | | | | | | 1 | | | | | | | | 36 | | | | | | | | | | | | | | | 37 | | | | | | | | | | | | | | | Total | 6,391 | 951 | 5,053 | 4,163 | 537 | | 4,269 | 1,177 | | | | | | | | т. 1 | | | 1951/5 | | 3.5 | | - | |--------|-------|------|-------|--------|--------|------|-------|---------------| | | | Sep. | Oct | | Jan | Mar. | Apr | | | CM 1.0 | ST | OB | ST | OB | ST | OB | ST | OB | | 12 | | | 1 | | | | | | | 13 | | | 1 | | | | | | | 14 | 2 | | | | _ | | | | | 15 | 2 | | 1 | | 2
2 | | | | | 16 | 4 | | | | | | 3 | | | 17 | 36 | | 6 | 10 | 11 | | 19 | 3 | | 18 | 90 | | 8 | 20 | 40 | | 76 | 4 | | 19 | 109 | | 25 | 38 | 81 | 3 | 141 | 22 | | 20 | 168 | | 55 | 80 | 109 | 14 | 279 | 66 | | 21 | 242 | 2 | 80 | 82 | 136 | 23 | 314 | 115 | | 22 | 212 | 4 | 220 | 101 | 158 | 21 | 384 | 135 | | 23 | 219 | | 453 | 153 | 155 | 18 | 551 | 135 | | 24 | 170 | 2 | 588 | 127 | 123 | 21 | 658 | 118 | | 25 | 122 | | 489 | 68 | 71 | 9 | 668 | 52 | | 26 | 117 | | 258 | 24 | 46 | 6 | 583 | 28 | | 27 | 104 | | 135 | 5 | 39 | 3 | 518 | 7 | | 28 | 78 | | 66 | 1 | 20 | | 394 | 4 | | 29 | 41 | | 50 | | 10 | 1 | 241 | | | 30 | 23 | | 29 | | 10 | | 130 | | | 31 | 10 | | 18 | | 10 | | 67 | | | 32 | 1 | | 6 | | 4 | | 37 | 2 | | 33 | | | 4 | | 6 | | 11 | | | 34 | | | 4 | | | | | | | 35 | | | | | | | | | | 36 | | | | | | | | | | 37 | | | | | | | | | | Total | 1,750 | 8 . | 2,497 | 709 | 1,033 | 119 | 5,074 | 691 | | _ | _ | _ | _ | | _ | _ | |-----|-------|----|---|-----|---|---| | - 1 | - (1) | Ε. | 7 | - / | 5 | • | | | | | | | | | | | Jul. | - Sep. | Oct. | 1952/5
- Dec. | Jaņ | Mar. | Apr | Jun. | |-------|-------|--------|-------|------------------|-----|------|-------|--------| | cm | ST | OB . | ST | OB | ST. | OB | ST | OB | | 12 | | | | | | | | | | 13 | | | | | | | | | | 14 | | | | | | | | | | 15 | | | | | | | | | | 16 | | | • | | | | | | | 17 | 6 | | 1 | | | | | | | 18 | 17 | 3 | 10 | 14 | | 1 | 6 | | | 19 | . 56 | 9 | 51 | 28 | 3 | | 71 | 2 | | 20 | 126 | 63 | 143 | 107 | 10 | 5 | 254 | 7 | | 21 | 172 | 176 | 279 | 271 | 18 | 8 | 496 | 25 | | 22 | 246 | 286 | 359 | 463 | 20 | 5 | 610 | 55 | | 23 | 298 | 287 | 439 | 496 | 25 | 5 | 631 | 50 | | 24 | 277 | 214 | 391 | 398 | 25 | 2 | 540 | 34 | | 25 | 203 | 103 | 224 | 173 | 19 | 2 | 324 | 32 | | 26 | 106 | 31 | 84 | 79 | 13 | | 228 | 15 | | 27 | 87 | 31 | 42 | 20 | 8 | 1 | 150 | 10 | | 28 | 54 | 7 | 16 | 7 | 14 | 2 | 120 | 3 | | 29 | 21 | 3 | 6 | 1 | 2 | | 80 | 2 | | 30 | 15 | 2 | | 2 | 6 | 1 | 48 | 2 | | 31 | 6 | 2 | | | 7 | | 17 | 2
1 | | 32 | 3 | | | | 2 | | 4 | 1 | | 33 | 1 | | | | 1 | | 2 | | | 34 | | | | | | | 1 | | | 35 | | , | | | | | | 1 | | 36 | | | | | | | | | | 37 | | | | | | | | | | Total | 1,694 | 1,217 | 2,045 | 2,059 | 173 | 32 | 3,582 | 239 | | | | | | 1953/54 | | | | | |-------|-------|---------|-------------|---------|-------------|-----|-------|-------------| | | Jul | e + F · | | - Dec. | Jan | | Apr | Jun. | | cm | ST | OB | ST | OB | ST | OB | ST . | OB | | 12 | | | | | | | | | | 13 | | | | | | | | | | 14 | | | | | | | | | | 15 | | | | | | | | | | 16 | | | | | | | | | | 17 | 1 | | | | | | | | | 18 | 14 | | 2 | 1 | | | | | | 19 | 70 | 5 | 11 | 17 | | | 4 | | | 20 | 253 | 33 | 58 | 64 | 2 | 4 | 71 | 9 | | 21 | 578 | 47 | 176 | 174 | 5 | 19 | 223 | 38 | | 22 | 830 | 87 | 284 | 236 | 15 | 38 | 479 | 65 | | 23 | 849 | 78 | 336 | 207 | 24 | 40 | 597 | 49 | | 24 | 738 | 60 | 387 | 152 | 27 | 28 | 651 | 38 | | 25 | 540 | 14 | 341 | 91 | 20 | 19 | 511 | 25 | | 26 | 280 | 7 | 202 | 46 | 14 | 6 | .431 | 23 | | 27 | 118 | 2 | 158 | 24 | 11 | 1 | 320 | 3
7 | | 2'8 | 68 | 2 | 79 | 8 | 6 | 2 | 253 | 7 | | 29 | 24 | | 36 | 3 | 6 | 1 | 138 | 4
3
2 | | 30 | 9 | | 28 | 1 | 3 | | 83 | 3 | | 31 | 9 | | 10 | 1 · | 3
2
3 | | 49 | 2 | | 32 | | | 15 | • | 3 | | 20 | | | 33 | | | 8 | | | | 6 | | | 34 | | | 8
3
3 | | | | . 5 | | | 35 | | | 3 | | | | 1 | | | 36 | | | 3 | | | | | | | 37 | | | | | | | | | | Tota1 | 4,381 | 335 | 2,145 | 1,025 | 138 | 158 | 3,842 | 266 | | 1954/55 | | | | | | | | | | | |---------|-------|------|-------|------|-----|------|-------|-----|--|--| | | Jul | ocp. | Oct | 2001 | Jan | Mar. | Apr | | | | | cm | ST | OB | ST | OB | ST | OB | ST | OB | | | | 12 | | | | | | | - | | | | | 13 | | | | | | | | | | | | 14 | | | | | | | | | | | | 15 | | | | | | | | | | | | 16 | | | | | | | | | | | | 17 | | | | | | | 1 | | | | | 18 . | 4 | | 2 | 1 | 3 | | , | 3 | | | | 19 | 22 | | , 1 | 3 | 4 | | 10 | 2 | | | | 20 | 85 | 1 | 24 | 16 | 8 | | 56 | 28 | | | | 21 | 302 | 2 | 115 | 56 | 34 | | 142 | 45 | | | | 22 | 513 | 5 | 267 | 85 | 100 | | 277 | 70 | | | | 23 | 664 | 14 | 349 | 123 | 131 | | 429 | 75 | | | | 24 | 716 | 10 | 325 | 102 | 148 | | 573 | 54. | | | | 25 | 463 | 7 | 302 | 54 | 107 | | 468 | 40 | | | | 26 | 316 | 6 | 191 | 28 | 81 | | 434 | 8 | | | | 27 | 200 | 6 | 112 | 24 | 78 | | . 330 | 5 | | | | 28 | 97 | | 67 | 7 | 48 | | 238 | 2 | | | | 29 | 73 | 1 | 38 | 1 | 37 | | 166 | 4 | | | | 30 | 27 | | 12 | | 26 | | 105 | | | | | 31 | - 22 | | 3 | | 20 | | 56 | 4 | | | | 32 | 6 | | 4 | | 16 | | 36 | 2 | | | | 33 | 6 | | | | 10 | | 12 | | | | | 34 | 1 | | | | 6 | | 1 | | | | | 35 | | | | | 1 | | | | | | | 36 | | | | | | | | | | | | 37 | | | | | | | | | | | | Total | 3,517 | 52 | 1,812 | 500 | 858 | | 3,334 | 342 | | | 1,901 Total 1,311 1955/56 Jul. - Sep. Oct. - Dec. Jan. -Mar. Apr. -Jun. STOB STOB OB STOB cmST2,8 4 2 2 1,793 | • | Jul | - Sep. | 0ct | Dec. | Jan | Mar. | Apr. | - Jun. | |-------|-----|----------------|------|------|-----|------|-------|--------| | cm | ST | OB | ST | OB | ST | OB | ST | OB | | 12 | | | | | | | | | | 13 | | | | | | | | | | 14 | | | | | | | | | | 15 | | | | | | | | | | 16 | | | | | | | | | | 17 | | | | | 1 | 1 | | | | 18 | | 1 | • | | 3 | 2 | | 1 | | 19 | . 1 | 6 | 1 | | 18 | 12 | 1 | 11 | | 20 | 17 | 53 | 3 | | 27 | 18 | 23 | 66 | | 21 | 51 | 143 | 6 | 3 | 32 | 29 | 56 | 215 | | 22 | 119 | 200 | 9 | 5 | 14 | 19 | 151 | 378 | | 23 | 161 | 180 | 24 | 10 | 20 | 11 | 224 | 353 | | 24 | 159 | 145 | 36 | 12 | 6 | 6 | 268 | 361 | | 25 | 145 | 100 | . 35 | 9 | 2 | 4 | 253 | 235 | | 26 | 112 | 44 | 23 | 7 | 2 | 2 | 221 | 145 | | 27 | 78 | 1 6 | 7 | 6 | | 1 | 115 | 75 | | 28 | 44 | 9 | 10 | 1 | | | 88 | 28 | | 29 | 19 | 2 | 2 | 1 | | | 43 | 16 | | 30 | 9 | | | | | | 17 | 4 | | 31 | 2 | | | | | | 3 | 1 | | 32 | | | | | | | 2 | | | 33 | | | | | | | | | | 34 | | | | | | | | | | 35 | | | | | | | | | | 36 | | | | | | | | | | 37 | • | | | | | | | - | | Total | 917 | 899 | 156 | 54 | 125 | 105 | 1,465 | 1,889 | | | Jul | - Sep. | Oct | 200. | Jan | Mar. | Apr. | - Jun. | |-------------|--------|--------|-------|------|-----|------|-------|--------| | cm | ST | OB | ST | ОВ | ST | OB | ST | OB | | 12 | _ | | | | | | | | | 13 | | | | | | | | | | 14 | | | | | | | | | | 15 | | | | | | | | | | 16 | | | | | | | | | | 17 | | | | | | | | | | 18 | | | | | | | 2 | | | 19 | 3 | 4 | 4 | 1 | | | 10 | 2 | | 20 | 6 | 24 | 36 | 21 | | 12 | 16 | 62 | | 21 | 12 | 63 | 108 | 117 | | 39 | 58 | 182 | | 22 | 39 | 108 | 170 ` | 194 | | 80 | 136 | 394 | | 23 | 49 | 95 | 167 | 166 | | 68 | 216 | 371 | | 24 | . 52 | 88 | 151 | 119 | | 29 | 261 | 298 | | 25 | 69 | 55 | 88 | 67 | | 14 | 222 | 223 | | 26 | 50 | 36 | 76 | 38 | | 5 | 188 | 182 | | 27 | 17 | 9 | 44 | 23 | | 3 | 132 | 79 | | 28 | 14 | 6 | 30 | 4 | | 1 | 74 | 34 | | 29 | 12 | 2 | 23 | 4 | - | | 46 | 15 | | 30 | 9
3 | 2 | 5 | 2 | | | 24 | 5 | | 31 | 3 | 1 | 3 | | | | 10 | | | 32 | 2
3 | | 2 | | | | 4 | 1 | | 33 | 3 | | | | | | | | | 34 | | | 1 | | | | | | | 35 | | | | | | | | | | 36 | | | | | | | | | | 37 | | | | | | | | | | Total | 340 | 493 | 908 | 756 | | 251 | 1,399 | 1,848 | | | Jul. | - Sep. | 0ct | 1958/5
Dec. | Jan Mar. | Mar Jun. | |-----------|--------|--------|-----|----------------|----------|-------------| | cm | ST | OB | ST | OB | ST OB | ST OB | | 12 | | | | | | | | 13 | | | | | | | | 14 | | | | | | | | 15 | | | | | | | | 16 | | | | | | | | 17 | | | | | | | | 18 | | 1 | | 1 | 2 | | | 19 | | 13 | | 4 | 11 | 1 | | 20 | 7 | 55 | | 20 | 20 | 3 | | 21 | 77 | 112 | | 52 | . 27 | 25 | | 22 | 280 | 294 | | 129 | 21 | 89 | | 23 | 455 | 282 | . 1 | 133 | 16 | 143 | | 24 | 426 | 188 | 5 | 104 | 18 | 172 | | 25 | 324 | 118 | 5 | 56 | 8 | . 148 | | 26 | 213 | 69 | 4 | 42 | 12 | 122 | | 27 | 126 | 35 | 2 | 32 | 8 | 79 | | 28 | 70 | 25 | 2 | 30 | 13 | 59 | | 29 | 55 | 11 | | 16 | 4 | 23 | | 30 | 22 | 7
3 | | 5
3
3 | 8 3 | 9 | | 31 | 9
5 | 3 | | 3 | 3 | 7 | | 32 . | 5 | | | 3 | 3 | | | 33 | 1 | | | | 1 | | | 34 | 1 | | | | 4 | | | 35 | | | | | | • | | 36 | | | | | | | | 37 | | | | | | | |
Total | 2,071 | 1,213 | 19 | 630 | 179 | 880 | TABLE F: MARKET MEASUREMENTS OF REDFISH CAUCHT BY BOATS OTHER THAN STEAM TRAWLERS, 1959/60 TO 1966/67 | | 1959/60 | | | | | 1960/61 | | | | |-------|---------|------|--------|------|------|---------|------|------|--| | , | Jul | Oct | Jan | Apr | Jul | 0ct | Jan | Apr | | | cm | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | | |
12 | | _ | | | | | | | | | 13 | | | | | | | | | | | 14 | | | | | | | | | | | 15 | | | | | | | | | | | 16 | | | | | | • | | | | | 17 | | | | | | | | | | | 18 | | | | | | | | | | | 19 | 4 | | | 4 | | | | | | | 20 | 53 | 2 | 2 | 23 | | 3 | | 2 | | | 21 | 276 | 11 | 6 | 43 | 12 | 13 | 2 | 24 | | | 22 | 558 | 44 | 18 | 72 | 51 | 118 | 15 | 97 | | | 23 | 544 | 62 | 20 | 111 | 88 | 173 | 17 | 138 | | | 24 | 411 | 41 | 16 | 144 | 74 | 134 | 17 | 137 | | | 25 | 275 | 26 | 16 | 127 | 63 | 90 | 5 | 124 | | | 26 | 200 | 9 | 9 | 114 | 48 | 38 | 4 | 109 | | | 27 | 108 | 4 | 5 | 101 | 66 | 17 | 5 | 95 | | | 28 | 77 | 2 | 6 | 82 | 39 | 4 | | 67 | | | 29 | 55 | | 3 | 54 | 26 | 3 | 1 | 61 | | | 30 | 22 | | | 36 | 9 | 1 | | 27 | | | 31 | 8 | | 1
1 | 12 | 4 | 1 | | 12 | | | 32 | 12 | | 1 | 11 | | | | 5 | | | 33 | 5 | | | 8 | | | | 1 | | | 34 | 1 | | | | | | | | | | 35 | · | | | | | | | | | | 36 | • | | | | | | | | | | 37 | | | | | | | • | | | | Total | 2,609 | 201 | 103 | 942 | 480 | 595 | 66 | 899 | | | | 1961/6 | 2 | | 1962/63 | | | | | |-------|-------------|--------|------|---------|--------|------|------|-------------| | | Jul | Oct | Jan | Apr | Jul | 0ct | Jan | Apr | | cm | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | | 12 | | | | | | | | | | 13 | | | | | | | | | | 14 | | | | | | | | | | 15 | | | | | | | | | | 16 | | | | | | | | | | 17 | | | | | 3 | | | | | 18 | | | | | 3
3 | | | | | 19 | 10 | | | | 5 | | ų. | | | 20 | 44 | 7 | | 3 | 17 | | | | | 21 | 77 | 39 | 3 | 24 | 52 | 4 | | 28 | | 22 | 212 | 106 | 20 | 69 | 81 | 48 | | 97 | | 23 | 240 | 128 | 27 | 117 | 93 | 84 | | 211 | | 24 | 245 | 77 | 49 | 144 | 90 | 118 | | 237 | | 25 | 160 | 31 | 49 | 152 | 66 | 94 | | 203 | | 26 | 99 | 23 | 46 | 125 | 55 | 55 | | 146 | | 27 | 81 | 14 | 15 | 79 | 52 | 23 | | 137 | | 28 | 62 | 12 | 9 | 56 | 30 | 12 | | 57 | | 29 | 35 | 10 | 8 | 27 | 15 | 4 | | 52 | | 30 | 23 | 6 | | 29 | 5 | 4 | | 34 | | 31 | 4 | 3
5 | | . 10 | 5
3 | | | 13 | | 32 | 1 | 5 | | 7 | | | | | | 33 | 1 | | | 6 | | | | 2 | | 34 | | 1 | | 6
2 | | | | 7
2
1 | | 35 | | | | | | | | | | 36 | | | | | | | | | | 37 | | | | 1 | | | | | | Total | 1,294 | 462 | 226 | 851 | 570 | 446 | | 1,225 | | | 1963/6 | 4 | | | 1964/65 | | | | |-------|--------|------|------|------|---------|------|-------|--------| | | Jul | Oct | Jan | Apr | Jul | 0ct | Jan | Apr | | cm | _ Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | _Mar. | Jun. | | 12 | | | | | | | | | | 13 | | | | | | | | | | 14 | | | | | | | | | | 15 | | | | | | | | | | 16 | | | | | | | | | | 17 | 5 | 2 | | | | | | | | 18 | 12 | 2 | | | | | | | | 19 | 38 | 12 | | 2 | 5 | 1 | 5 | 1 | | 20 | 35 | 10 | 2 | 7 | 5 | 4 | 16 | 10 | | 21 | . 40 | 19 | 8 | 30 | 65 | 26 | 30 | 39 | | 22 | 33 | 60 | 26 | 78 | 158 | 112 | 53 | 81 | | 23 | 49 | 93 | 31 | 116 | 237 | 163 | 54 | 105 | | 24 | 36 | 107 | 62 | 149 | 252 | 155 | 51 | 156 | | 25 | 40 | 84 | 45 | 124 | 177 | 96 | 60 | 140 | | 26 | 41 | 87 | 25 | 118 | 111 | 89 | 43 | 129 | | 27 | 18 | 47 | 17 | 86 | 90 | 56 | 41 | 112 | | 28 | 27 | 29 | , 6 | 56 | 42 | 27 | 24 | 63 | | 29 | 10 | 7 | 1 | 39 | 13 | 23 | 18 | 20 | | 30 | 6 | 4 | 1 | 15 | 4 | 7 | 11 | 11 | | 31 | -2 | 2 | | 13 | 2 | 1 | 6 | 5
1 | | 32 | 3 | 2 | | 1 | 1 | 2 | 6 | 1 | | 33 | 1 | 1 | | 1 | | | 3 | | | 34 | | | | | | | 2 | | | 35 | | | | | | | 2 | | | 36 | | | | | | | | | | 37 | | | | | | | 1 | | | Total | 396 | 568 | 224 | 835 | 1,162 | 762 | 426 | 873 | | | 1965/6 | 6 · | | | 1966/67 | | | | | |-------|--------|------|------|------|---------|------|-------|-------|--| | | Jul | Oct | Jan | Apr | Ju1 | 0ct | Jan | Apr | | | cm | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | | | 12 | | | | | | · | | | | | 13 | | | | | | | | | | | 14 | | | | | | | | | | | 15 | | | | | | | | | | | 16 | | | | | | | | | | | 17 | | | | | | | | | | | 18 | | | | | | | 1 | | | | 19 | 1 | | | 2 | | | 2 | 2 | | | 20 | 3 | 3 | | 4 | 1 | | 15 | 18 | | | 21 | 16 | 39 | | 34 | 1 | 18 | 107 | 111 | | | 22 | 39 | 79 | | 103 | 6 | 82 | 185 | 299 | | | 23 | 39 | 53 | | 107 | 6 | 128 | 175 | 496 | | | 24 | 38 | 60 | | 131 | 17 | 93 | 154 | 536 | | | 25 | 32 | 56 | | 109 | 5 | 50 | 129 | 416 | | | 26 | 39 | 66 | | 136 | 20 | 44 | 110 | 291 | | | 27 | 25 | 57 | | 102 | 12 | 44 | 78 | 185 | | | 28 | 12 | 59 | | 86 | 7 | 34 | 59 | 136 | | | 29 | 8 | 48 | | 49 | 1 | 23 | 40 | 69 | | | 30 | 5 | 25 | | 32 | 1 | 11 | 42 | 45 | | | 31 | 4 | 25 | | 11 | 1 | 5 | 16 | 23 | | | 32 | 2 | 7 | | 3 | | 3 | 4 | 11 | | | 33 | 4 | 7 | | 2 | | 2 | 2 | 5 | | | 34 | | 5 | | | | | 2 | 1 | | | 35 | 1 | 2 | | | | 1 | | | | | 36 | | | | | | | | | | | 37 | | | | | | | 1 | | | | Total | 268 | 591 | | 911 | 78 | 538 | 1,122 | 2,644 | |