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ON THE CONCEPT OF FISH MORTALITY RATES IN THE

EXPLOITED PHASE AND THEIR ESTIMATION BY SAMPLING

THE COMMERCIAL CATCH, WITH SPECIAL ATTENTION TO
ROCK LOBSTER FISHERIES .

by W.J. Stamper

ABSTRACT

The catchability coefficient q and natural
mortality coefficient M of a cohort in the exploited
phase are defined as the expected values, given the set
of recruits, of the arithmetic means of the corresponding
coefficients of those members of the cohort that are still
alive. It is shown that it would be useful, in population
modelling, to know values of q and M defined in this manner.

A general method is developed for the estimation
of q and M, of assumed functional form, by sampling the
commercial catch. The method does not involve an inter-
mediate step of computing total mortality rates, which
do not exist when the effort is not a differentiable

- function of time.

Special attention is given to the case of rock
lobster fisheries. Real fisheries data are used only

for illustration.



I. INTRODUCTION

Gulland (1969) describes a method whereby the catchability
coefficient, ¢, and natural mortality coefficient, M, are estimated
from catch and effort data, but only as constants. Moreover, the
formulation of that method imposes the restriction of having the total
mortality coefficient, Z, existing (i.e. effort a differentiable
function of time) and constant for a periocd, for which it is estimated,
and then changing to a new level. This restriction is imposed also by
a method due to Murphy (1965) whereby the fishing mortality coefficient,
F, for a cohort is estimated from catch data when M is known.

The following general method incorporates the improvement of
allowing q and M to have any specified functional form, q = constant
and M = constant (or known) being only one particular case. Also, the .
above restriction is removed by omitting the unnecessary intermediate
step of calculating Z values.

" q and M are defined for a cohort in the exploited phase in terms
of corresponding parameters of the member individuals. Before
developing the general model for estimating q and M in the exploited
phase by sampling the commercial catch, it is shown that it would be
useful, in population modelling, to know the values of cohort mortality
rates defined in this manner.

Special attention is given to the case for rock lobster fisheries.
Real fisheries data are used only for illustration in the general theme
and should not be taken as the most accurate data available. It is
hoped that a supplement to this work will eventually be prepared,
‘wherein the model will be applied to data on the Australian southern
rock lobster, Jasus novachollandiae Holthuis, to estimate the q values
. and the M values for that species. : -

Notations adopted in this paper are outlined in.Appendix I.



IT1. THE CONCEPT OF MORTALITY RATES
IN THE EXPLOITED PHASE

Partition the entire time axis.into intervals and call them
"cohort'" intervals. On each cohort interval choose a point and call
it the ”blrthdate” .0of that interval.

For a certain type of fish and this partitioning of time, assume
the existence of a definite "recruitment cohort age" X, , large enodugh
such that the birthdates of all fish born on any cohort interval are
before the date X = X; , where X denotes the age of the interval, and
small enough such that each of these fish is too young to be caught °
when X = X,

Let R be the entire set of this type of fish each of which 1is
alive when its cohort interval (the interval on which it was born) is
recruited (X = Xr) . Thus R is the set of recruits over all time. Call .
a "cohort" each subset of those members of R that have the same cohort
interval, and perhaps also some other common characteristics e.g. same
sex, inhabit same area from recruitment onwards (called a "zone™). At
any time t some members of R are not yet born, some are alive and some
are dead; call the "standing crop'" S(t} those fish that are allve in
the cohorts with X-2 X;

Call the "exploited phase'" of a cohort that period of time after
the date X = Xy . This modelling concerns stochastic death processes
incurred by cohorts in the exp101ted phase.

Let g(t) be the fishing effort (in a zone) on R from the beginning
of the fishery up to time t . g(t) is a non-decreasing continuous
function of t , but in general not everywhere differentiable. During
(t,t+dt) let the fishing effort be dg . Consider a definite fish € R
which at t is alive in the exploited phase and has size h and age x .
During (t,t+dt) it might be caught, might die of natural causes (i.e.
die but not be caught), or might remain alive. The probabilities
(designated by "Pr(...)")} associated with these events are defined
as follows: ‘ ‘ .

Consider the entire set of situations, past, present and future,
of which the above situation is a particular instance, all with certain -
common attributes, namely where a fish h,x, ¢ R, in the exploited phase,
is subjected to dg during a time interval of duration dt with fishing
gear in certain condition (e.g. mesh size, type of bait) when certain
types and quantities of natural foods are available, when a certain
pollution’ evel and a certain predation level exists, etc.. Then -

Pr(caught) = fraction of situations ‘when the fish is caught during the
relevent time interval of duration dt ,

fraction of situations when_the-fish dies

Pr(natural death)
© naturally,

Pr(remains alive) fraction of situations when the fish remains alive.



These events are mutually exclusive and exhaustive, so
Pr(dies) = Pr(caught) + Pr{(natural death) . If dt is small enough,
Pr(caught) will not depend upon the magnitude of Pr(natural death) ,
i.e. upon dt, and Pr(natural death) will not depend upon dg . So, if
during (t,t+dt) there are no sudden changes in fishing methods, natural
foods, pollution level, predation level, etc., then Pr{caught) -is
proportional to dg, and Pr(natural death) is proportional to dt . The
proportionality constants will in general depend on h, X and t (also
on sex and zone - for instance, see Section XIII). So we can write
Pr(caught) = q(h,x,t)dg and Pr(natural death) = M(h,x,t)dt .

It is not feasible to estimate q(h,x,t), M(h,x,t) by sampling the
catch, because the size of a fish caught is not known sufficiently
accurately at any previous time. However, it is possible to trace the
progress of a cohort, so cohort averages q and M (defined below) can
be estimated. '

Consider now the exploited phase of a cohort ¢ R, which has N,
fish and is recruited at t, . Let qi, Mi be respectively the functions
qth,x,t), M(h,x,t) for the ith fish of this cohort, and let h;j(x) be
its size at age X . Assume h;j (x) to be a deterministic function of X
(but possibly different for different 1), making qj and Mj deterministic.
functions of t . (Note that in practice growth is usually stochastic,
i.e. hj(x) is a variate, making qj andMj variates. However, in this
paper these variations in the hj (X} are ignored except in the
calculation of the expected value and the variance of the cohort/size
key (Case IIT in Fig.2).)

.Let t 2 to . In the following definitions the integrals are over
the path shown in Figure 1. '

dP; = qjdg + Mjdt . PiEJ dP;
" Q
wi = e'Pi/ Ze'Pi
1
dP = jwidP; . : P = J dP
o
aj = (1,0) if individual i(alive,not alive) at t .
| No
N = number of fish e cohort alive at t , = Ja; .
1
-~ - 1 . ~ _ 1
g = 5 lajag - M= IMjay
dp = = JaidPi = § dg + Mdt . PEJ dp
Q

Note that the variates N, (q, ﬂ, P are functions of t, and X {to specify
the cohort}.
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Theonem: —

-P

(1) E(N| No e

n

‘ - -1
(2) CV(N|, CV(ql|, CV(M], CV(P| ¢ E *(N|

(3) E(P| = dfs(l+6),-where § s ETM(N]
Proog: — 7
(1) E(a;| = e P, o2(a| = e (1-ef)
“ E(N| = Z e-% ;'QELE|= dF
| E (N
= (1- Xwie-Pii% / E%(N| < E-%(NI

(2) CV(N|
= Jgqza; . ~g=1/N.

So that the following expression for CV(r| cannot equal 0/0, assume
(without loss of generality) that at recruitment (t,)}, for every 1,
q; = O but nevertheless q; > 0

cv(r] = {Iafe™™ (1-e7P1)} %/ Jase™ < {Jaze Fi}%/fa5e 7

Let T

q.e 1 e 1 5 5 L
=[Z{l—_p.qi} / Z{“’:’ﬁf’qi}] / EF(N] ~ ETE(N|
ivIigse ) itle )

j J i .
since the numerator is the ratio of two weighted means of the qj .

. _1 - _1
LCOV@E| < ETEN| by Appendix 1I(4). Similarly CV(M| < E™*(N|

, ~ _iy : ) .
L CV({|, CV(M| § E"*(N| at any point on the path of integration
of P, where N refers to the upper limit of integration. '

t E(dP|(1-ET%[N|) < dP g E(dP|(1+E%[N|)

~ ~

. o(P| s E(P|ETF(N]|

~

(3) By Appendix II(2),

E(dp| = (1+CV?[N|-p[La;dP, ,N|CV([Za;dP; [CV[NI+0(e?)),

E(N
where '€ = CV(Ia;dPj| + CV(N]|
Now CV{Za;dPj| < E-%(Nl - (cf. above examination of CV[r]) .
© E(dP| = (Zw;dP;)(1+8) = dP(1+8) , where |8| < E7'(N|

Q.E.D.



q , M can be defined by the statement that the respective
expected proportions of deaths in the cohort due to fishing, natural

causes in any proceeding. small time interval dt are q dg , M dt . {Note
that if g(t) can be replaced, to suff1c1ent approximation, by a curve
with continuous first derivative, g' , we can write dg = g'dt . Then

g dg = Fdt where F = dg' , and the expected total number of deaths
can be written 7 dt , where 7 = F + M ) ‘

The model developed herein is for the estimation of“'q”E'If(ﬁ|l,
M= E(M|

Knowledge of these functions is useful for population modelling.

‘They might be used, for instance, in equations such as

-J qdg +Mdt _ ‘
E(N| = No = Noe Qo , the former of which holds
when E(N[ >> 1 (by the theorem -~ (l),(3)).

E(P[

Under the more stringent condltlon Eé(N| >> 1 , which will be
assumed to hold later in developing the model, CV(N| << 1 (by the
theorem - (2)). In such circumstances it would be justifiable to write

" L}
-J qdg + Mdt
N=Nqe Qp ' .- {This is not done in this paper.) In such’

- deterministic descriptions q,M have been called respectively the

catchability coefficient, natural mortality coefficient (and F = IS[?| L

= 5[21 respectively the fishing mortality coefficient, total
mortality coefficient) — see, for instance, Gulland (1969).

N ‘
Note that when E*(N| >> 1 , by the theorem — (2),

cv(g| , CV(M| , CV(P| << 1 (similarly CV[F] , CV[Z| << 1).

However, the population dynamics cannot strictly be called deterministic
in this situation, for there are still variates, having large
coefficients of variation (i.e. >> 1), which can be defined on the system
— for instance the catch from the cohort taken over a small time period.

It cannot even be claimed that all functions of N, q M P , (B, D
have small coefficients of variation. .

Note also that if the cohort interval is short enough and
if gq(h,X,t) , M(h,X,t) are independent of h, then § ,M are not

variates.



I11. FLOW SUMMARY OF GENERAL MODEL FOR ESTIMATION OF q , M
BY SAMPLING THE COMMERCIAL CATCH
Figures 2 - 5 are a flow summary of the general model developed
herein. Flow chart symbols are given in Figure 12.
The details of Figures 2 -5 are elaborated in the remainder of
the text.
IV. BASIC EQUATION FOR ESTIMATION OF q , M BY SAMPLING THE
COMMERCIAL CATCH '

Let S be the catch taken (in the zone)} from R over the sampling

interval (t-§£— , t+ §-£),where t—§£2 toe . Them sTATR ,

2 2 2
where A = S(t - %;J U (all cohorts recruited in [t - éE—, T+ %;ﬂ)-

2
Let there be ¢ fish.'€ s belonging to the cohort under consideration
(i.e. the cohort of Section II, recruited at to }. These are the members

of the cohort that are taken from S(t - %;J over (t - %}-, t +-%}). It
will be shown later that s is sampled to determine an estimator & of
E(c{A) . £ is assumed unbiased, i.e. E(E£[A} = u = E(c|A)

Pr( ith fish is caught during sampling'in;erval1alive at t - %;J

= ‘fqidg , where the integration is over (t f:ﬁt/2 ,t+8t/2) . This
integral can be regarded equal to q;8g , where qi refers to time t, and
8g is the effort (in the zone) during the samﬁling interval. Hence

No , ’
= Z'éich_ﬁg where 3; is the variate a; but at time t - §t/2
: .

where Q; = qie-pi/que_Pj

Assuming q §g + M8t << 1, Then the weighted mean

Jw; (i 6g +M;8t) << 1 , where wj - = e’pi}’ze'pj . Then it is
reasonable to assume the weighted mean

TQ; (q; 6 + My 6t) << 1 |

Whence we can write .

E(£d;9; | = E(Lajq; | . Therefore

E(u/Tgl = Juwiq; = q(1+6) where 8] s E™' (N|
E(N



- There are various types of L corresponding to the various types of

Design sampling scheme

(L is a certain variate derived, for different cohorts, by sampllng
the catch taken during ”5amp11ng intervals"

[t| - §E} t' o+ St'] and [t" - 8t ot o+ §Eﬁ]- : L‘estimates”

2’ 2 2 2
\ an a .
log [ %h] + qdg + Mdt for the relevant cohort and time pair.
See Figure 1 for Q', Q". ~
sampling procedure.) Case I is when cohort (i.e. bdth age, sex) is

sampled. When at least oné of age, sex is not sampled (Cases 11, 111,
then size must be sampled '

Sample catch at time pairs t!,t'.

Make assumptions on

- functional form of q,
M for the population .
in question

For Cases II, III the cohort/size key
must be known for each 't" and each t".
The key is bdsed on the probability
distribution either of cohort given
size and perhaps also sex or age, or
of size given cohort. It can be deter-
mined in either of two ways:

Case II.- Sample the catch for cohort/
size. structure (not necessarily at the

t' or t" when the key is to be used). o
) . - Calculate estimates
Case III.- Estimate necessary non- and confidence ranges

mortality (i.e. reproduction, growth) of q, M.

parameters (and the mean square errors
of the estimates) preparatory to cal-
culating key, e.g., by computer sim=
ulation,

‘Fig. 2. Commencement of flow summary of generai model
for estimation of q,M by sampling the commercial catch.
Flow is completed in Figures 3 - 5,



For each cohort, sampling interval: -
(11q8g + MSt <<1 ? (2} expected
catch >>1 ?

(If these conditions hold for a
cohort for any two 6t',dt' then

12 [L| for the cohort for t', t"

can be calculated by the model
described herein}.

@ 7

For each time pair and each
of the different cohorts,
calculate { .

1

Redefine sampling intervals; and/or
redefine cohort intervals; and/or

reject (cohort, sampling interval) /
combinations, for which conditions (:)——{;x
(1), (2) do not hold, from equations .

for g M .

Solve, for the a and the M
values, simultaneous equations
of the form

1 "
log [ %-] + J ddg + Mat = L .
qI! Ql
Any two equations relate to
different cohorts, and/or different
t', and/or different t“ . q, A
estimate q, M respectively.

Calculate each_Tz(L|. It has com- N
penents due to the catch, obtained
from a given effort, being a variate,
and due to the catch being sampled.

Calculate confidence ranges of the
q values and the M values.

Fig. 3. Flow summary for calculation of estimates and
confidence ranges of q,M for Case I. Continues from Figure 2.



For each t' and each t'",
estimate the key from
the relevant sample of
cochort/size structure.

A

Calculate the L .

Solve for the q and
the M values.

Redefine sampling intervals;
and/or redefine cohort inter-
vals; and/or when using key
based on probability distrib-
ution of size given cohort,
group cohorts which, for that
sampling interval, are not to
enter equations for a,ﬁ; and/

or redefine size classes; and/

or reject (cohort, sampling

‘interval) combinations, for
Jwhich (1), (2), (3} do noE'

hold, from equations for g,M

For each cohort,
sampling interval:

(1) qg + M8t <<1 *

(2) expected catch >>1 ?
(3) key deterministic ?
{If these conditions
hold the T2[f]| can be
calculated by the model
described herein.)

Calculate each t2(L] . 1t
has components due to the
catches at t',t" being
variates and being sampled;
and due to the mean square
errors of the estimates of
the ke¥s at these times.

Calculate confidence ranges
of q,M .

Fig. 4. Flow summary for calculation of estimates and
confidence ranges of q,M for Case II. Continues from Figure 2.




Solve for Ehe

Calculate the L. q and the M
values.

Start loop by assuming

first approximation of,

e.g., key. Continue

loop to convergence. -~

Calculate key, e.g.
by computer simul-  [&—t
-ation.

A 4

For each cohort
@ sampling interval:
(1) adg + MSt<<1 7
(2) expected catch >>1 7
(3) key deterministic ?

Calculate each t2(L). It has compon-
ents due to the catches at the t', t"
being variates and being sampled; and
due to the mean square errors of the
estimates of the non-mortality para-
meters used in calculating the keys

at these times.

Y

Redefine sampling intervals;
and/or redefine cohort inter-
vals; and/or when using key

based on probability distrib- - \

ution of size given cohort, ‘

group cohorts which, for that Calculate confidence
sampling interval, are not to ranges of q,M.

enter equations for q,M; and/
or redefine size classes; and/
or reject {cohort, sampling
interval) combinations, for
which (1), (2),. (3) do not _
hold, from equations for q,M. .

7 ~Fig. 5. Flow summary for calculation of estimates and
confidence ranges of q ,M for Case III. Continues from Figure 2.
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Let t' -8tr/22t,, tn -S8tr/2>t, ,t" >t! (see Figure 1). Let
6g' ,s' ,u' ,&" and 8g",s",u", " refer respectively to the sampling
intervals (t' -6t'/2,t' +8t'/2) and (t"-&t"/2, t"+6t"/2). Let. _
N', q' P', and N",q" ,P" refer respectlvely to t' and t" . Then, by the
theorem of Section II.— (1), :

E(g’/8g'| _ ECu'/8g' [/EN'| | Noe“T
E(gn/dgnl E(U"/ngl/E(an NDE'P"
- P g,—',(pe) , where le| < ETV(N"|
g{w}:log{'}q. _T)'l+€
E(E"/Gg"l

log { }+P"-_P—' when P" - P'>>E T(N"| ; it
w111 now be shown that this is the case prov1ded both the conditions
E(N"|>>1 and E(N'-N"|>>1 hold:

For let @ = ('P-"I—.“FT')E(N"!‘ , o = E(N'"|/E(N"! . Then, by the
theorem of Section I1-{1), ©=E(N"| loga
' >E(N"{ when a>e . Also,

) - _ log a
E(N' _an N |
~ 1 when 1l € a < e . ' - Q.E.D.
Q. |
t .
Let L = log (%T] + J -qdg + Mdt (see Figure 1). Then, by
]

the above and the theorem of Section II - (3} ,
when E(N"| >> 1 and E(N'- N"| >>1 ,

) E(E1/8g' | )
L= l°g{E(au;a§"5}

This is the basic equation for the estimation of q ,M by sampling
the commercial catch. The right hand side is replaced by the estimator L

'developed in the following pages, and the unknown functions q ,M 1in the

left hand side are replaced by their estimators q ,ﬁ . A set of such

equations is then solved for the J ,M values. {(Note: the estimators
of q', q" are denoted by q' , Q" respectively.)



[

V. THE ESTIMATOR £

As explained in Section IV, s is sampled to determine an
estimator & such that E(§|A) = 1 .

Consider the cohorts that can be represented in s {given A) to
be grouped, since when formulating the inverse cohort / size key (see
Section V (b)) it might be necessary to combine some of these cohorts.
However, £ is determined for single cohorts only, so such a cohort is
not grouped with any other. Hence most "cohort groups'" will contain
only one cohort. Each fish ¢ s will havea size-class H when caught and
will belong to a definite cohort group I' ; let C,g be the number with
_P{= Hy, T= PB . Hence ¢ is one of the C.g » S8y C.p -

Thére are various types of £ corresponding to various types of
sampling proceedure.

The factors determiningjf of a fish € s are its cohort age X at t
and (usually) its sex S (=1,2 if male,female). Since age, sex and size
are usually correlated, if one of these factors is hard to determine
then size is sampled and either a smaller sample of the factor is taken,
or it is not sampled.

Let Xg(j) be the age at tof 8(j), the jth cohort C Ig . When all
cohorts & Tg are of the same sex S5Sg , then I' = Tg is equivalent
to X (at t) ¢ XB(*} , 5= SB .Hence, under these circumstances, the
subscript B can be replaced by the subscript pair [XB(*)’ Sg] . When

[y consists of a single cohort, Xg(,) can be written as Xz .

{a) Case 1

For Case I, s is sampled for cohbrt, i.e, for both age and sex.
Hence £ estimates ¢, and the cohort / size key is not used.

(1) Determiné Cohont of Each Fish in Sampfe grom s
Exampfe: — A random sample of n fish is taken from s . In the

sample, let there be yy, fish € Ty, . Let & = c..yp/n

BEls) = ¢, ot(gls) - o)

(ii} Determine Size and Perhaps One of Age, .Sex of Each Fish in Sample
grom s . In Smaffer Sample Determine Size and Cohont of Each

Example: — Suppose that the age of a certain mollusc can be
easily determined by counting growth rings on the shell but that the
sex can be determined only by dissection. A random sample $; of n fish
is taken from s , and the size and age of each is measured. Let Y,p be
the frequency in s, of H=H, , T=Ty
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A random sample is taken from' those members of s,'that have
X(at t) = X, , and the sex determined for cach. In this latter sample.
let yyp be the frequency of H=H, , I' = I';; . Sampling is continued

past a predetermined level till yaEXb qiro for every a with
Tarxy, o ° '
1 = . _(;_-_- . _lby .
et &2 1 5 Yoy, y ' s
Y o >O) a[Xb,-] ‘
aE‘Xb,-J_ _
= - . = E—‘.—:— =
EGgn/Yarxy, 1150 = Yap/ Yar Xyl . - ECEIS) E(Ypls) = ¢ .

c?(&ls) = o?{E(E]s: )]s} + E{dz(zfsx)'ls}

ot {B(Elsi ) |st = o2 (S v,y |s) = Sleen) (e cc)

. n(C.. —l)
2 " = 2 Cae Yqb )
o} (glsl) G z——-——'n YCLEXb,'j y lSl
¥ %) alXp, 7
alXp,d

For any a',o" such that a' # a" ,

E {(Y(I 'b/ya;be, <] ) (ya”b/ya”-txb, ] ) ISI}

. E[E{(yu,b/ya; [sz o] ) (YC!"'b/ya“EXb "..:I ) |Ya! EXb, ] ? yalll:xg, .7 } I Sl:i =

E[E%'b/yhitxb,-l Yarcxy, -1 E0um Yanexy, 1 Varcxy, -3 ls‘] )

E (Ya’b/Y&'Exb,-])(Ya"b/Yu"CXb;.])|51] =

' (Ya’b/Ya;EXb,'j)(Ya"b/Ya"[Xb,']) =
E(Ya'b/ya’EXb, ‘] |Sl )E(ycz”b/ya”[}(b, o] Isi) . A
cov(ya'b/ya’txb,-J"ya"b/ya"tkb.q [s:) =0 .
0é(§|'5)= Z (_c._. Y o )202()” /y , ISJ
Lot ‘ N alXp, ] ab’ Yarxy, +1'>?
(Y >0) -

alXy,d
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2 .
5 Vo Yarxg, 1 |51

= 2 - A 2
g {B(yab/yacxb,q |Y0.EXb,-ZI] IS!} +E{° Y/ Yarxy, -3 |Yatxb,-3)|5‘}

2 —
o {Yab/Yu[Xb,_]|sl} = 0

il

, .
° {E(Yab/yatxb,-] Yok, 1) IS‘}

2
E{U (yab/ya[xb,qlyacxb,-:l)ls‘}

Yob (Yarxy, 3~ Yarxy, «1 ) Yarxy, »17 Yab) s }
1

2
Yd[xb,°lyatxb,-}(YdEXb,-B_l)

o0t (Els) =
c(c..-n)(c..-c)
n{c..-1)
' s Yop (Y 7Y Y .1~ Yab)
N E{ o (Cer) abttarxy, 17 YalXy, <1/ alxy, 37 Tab/ )
' n /. :
(¥¢X:j>o) yaEXb,-](YdEXb,']-%) J

(b) Cases 1T, 111

(1) Cohont / Size Key
(H,X tat t1, S) of a fish caught (in the zone) from A during

(t-6t/2,t+8t/2) is a trivariate. Let Pug = Pr(H=Hu , 1“=r8) ,

gy = Pr(I‘:I‘BIH=Ha) » Xgg T P1~(1"=1“8|H=HOt » $=55)
by, 2 PT (1‘=r8 |H=HOt , x=x8) » Yeg = PT (_H=Hu|1"=I‘B.)

Let Hyg = E(CaB[A) .

Theorem: —~

(1) For all size - classes and cohort groups, that can be

represented in § (given A}, u;, = ¢, M. Yoak, s
{2) For all size -classes and cohort groups of sex S, that can be
. . - =1
represented in § (given A), U-E*,S] = XE@S]* U*E-,S] . YQ&,S] u*[.’S]

(3) For all size -classes and the two cohort groups of age X at t
(i.e. one male cohort and one female cohort), that can be represented

U

. . B -1
in's (given ), Wy 9= ¥y Lae arx, o7 0 Ya0x,+] Herx, -3
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~Proog: —~
Wpg- [P, 00, » Py, = )ép..BYaB

. - -1
“P., = ¢** Py. » Vi P

‘. E(C.*lc- n) =7Co.’ p-*' = Co. ¢** p*- =.¢** E(C*olco-)
WL ¢**VU*-

Similarly u =y, . M,

(2) P.rxg,s1 " § Pate,81 Xrxg,s3a ? Pat,s3
=1 D
£ Pox

Y
,51 'alX

g(x)>S

. - -1 _
" Purw,s1 77 Xex,83% Pare 57 2 Yarx,s7 Par.,s3

By_reaéoning similar to (1), the result follows.
(3) Purx,s1 ~ § paEX,-JwEX,SEJa 3 pa;x,-j =£iihtx,333 Yarx,s81 .
- - : —1- - :
"Pork,«1 T Vg, +3x Parx, 7 0 Yarx,«1 Parx, -
By reasoning similar to (1), the result follows.
' o : : Q.E.D.
. =1 =1 =1 5
b, ' X, 574 ,w[X’*j*.and Y** ’Y*E*,SJ ’Y*tx,*J are respectively
the direct and the inverse cohort / size keys for $ . They depend upon

- the sampling interval, (the zone) and A .

The requirement that the key includes only size - classes and
cohort groups that can be represented in s ensures that the matrix has
no rows or columns with all zeros.

The direct matrix need not be square.

"The inverse matrix must be square to exist. If there are more size
"classes than cohort groups, the theorem still holds. for each square
inverse submatrix of order equal to the number of cohort groups.

Expressions fon ¢Ba s Xgg Vg »Yyg - —Gohort B(j) is recruited

at t —(XB(j)- +). . Let tB(j) Z max (t-&t/2 ,t-(XB(j)-Xf)) . Let Bi(j)

represent the ith fish € B(j) . If FB contains only one cohort, then

tB(l) s Bi(l) can be written as t

g Bi respectlvelyi'
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Let pB (3 )(G) = Pr(B4(j) caught in Hy during (tg( t+8t/2)|e A)

7
Hence pBi(j)(a) E(qu dg|A) , the integration being for that

portion of (tg ., , t +6t/2) during which B;(j) is in Hy . (If growth is

stochastic given A , the portion varies hence the expected value must
be taken )

Let a () be the variate a; for B;(j) but at t

BilJ B(J)
Then
= a

%8 E 8;Pp; @ /BZ,E 8y Pet (@)
Xgo = 1 aslpB @/ %g-g aExB ,5q7 ; Prxgr,s41; @
Vg = Z 2g Py, (0 / g § 3xg,5417 , Prg, 513 L@
Yag = L L 3 (4)Payy @ /L1 1 ag ()P (o)
af 5 8:(3) veilJ P i Bi(d)

Sufficient Condition fon Key Deternministic (Given Rj: — ¢,, is to

be used in equations of the type-u-s = ; ¢Baua- (see above theorem}.
However, the value of ¢,, used will be (an estimate of) E(o,, |
" Similarly for the other keys.

Hence

(1) ¢** ’ Y;i respectively'can be regarded as deterministic for
a given B if, for all a ,
olbg, | ol(Yad gyl << M /..

(2) Xew. ST ° Y;E*,S] respectively can be regarded as deterministic
*
for a given B if, for all o ,

/u

-1
My, 500! 2 o0, 8780l << Porxg,s1/ e, 80

(3) Yoy ole @ Y;EX,*] respectively can be regarded as determimistic
for a given B if, for all o ,

-1
Wiy spa0l » OL0tx,ed8al <oy 00 /Marx, o

The key is assumed to be deterministic for every cohort,sampling
interval for which £ is to be calculated.
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To be able to test this assumption for Case II, where the key is
estimated by sampling the catch for cohort / size structure, rather than
by calculation (Case ITI), expressions for the upper bounds of the above
standard deviations of the matrix elements are now developed. Growth is
assumed deterministic, so the key is regarded 'as a variate (glven R)
only through the a8 (i) being variates.

i .

(For Case 111, the standard deviations of the key matrix elements
will be calculated besides the expected values (given R) (see this
Section — Determination.of Key). These calculations include an
additional source of variation in the key by making the h ( )(x)
variates (stochastic growth). Then the pB (j)(a) are varlates and so
~are the g, (1) and the MB ( ) » thus affectlng the probability

i
distributions of the aB (3) and also causing further variations in the
i

() .
pBi(J)( ) )

Let N g be the number of fish € [p N A with non-zero pB ( )(a)

Let A ¢BC¢ ’ XBa ?T wBa

For a, B such that p, (o) = 0 for all i: E(Nasl =0 . EAl =0
i L.
oAl =

For o, B such that Pg; (@) # 0 for all i: E(N 6| >0 . E(A] >0

A is the ratio of two summations, each of which can be regarded as
containing only terms with non-zero ;@ (a) . Then

CV [numerator (A}], CV[denomlnator (A)l E~ (N l (cf. discussion
of CV[r| in proof of theorem of Section I -(2)) Hence, by
Appendix TI -(h), CV(A| < E 2(NuB!_, i.e

oAl < E(AI/E(N gl

Hence

(1) ¢., can be regarded as deterministic for a given 8 if, for
all a such that E(N | > 0 (which is equivalent to E[ ¢B | > 0},
E(¢ [/EZ(N !<<U /11

(2) XE* .57+ can be regarded as deterministic for a glven B if, for

all o such that E(N alXg, S]|:>O (which is equivalent to E[XEXB S]al O),
2
E(Xy,,5ql /B (NaEXB,SJ, “ Worxg,s1/ Mer- 83

(3) w[k 1, can be regarded as deterministic for a given B if, for

all o such that E(N, x SB]| >0 {which is equivalent to E[wEX,SBde >0),

EQUry SBJG.I / E* (Nacx,SBﬂ Horx,sp2 ENTES
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Likewise, 0(ygy| < Ogm » where
Gg = 0 if E(N£m| = 0 {which is equivalent to E[Yzml =0) ,
1
9gm = ECvgnl / B#(Ngp| if E(Ngpl > 0 '

Hence, by Appendix TII,

(1) Y.L can be regarded.as deterministic for a given B if, for
all a,

}f Egn EmB ” ” E(Y**‘ ”aB ”Q,m
2,m=1 | E(Y**| Il

J el Nas LB tral en) oy gy

T EG 12 o
where v,, is of order nxn and Eij =0 ,1if 1 =37, 1# ]
(2) Y;E*,S] can be regarded as deterministic for a given B if,
for all o ,
0 52a5m8||||E(Y*E;,S]||laB |2 m
wherl NEGH L ool
_ I E(T*[*,sjl||a8 I E(Y*[*,S]t|fﬁm 5
NEC, 500 110 20X («)553

“CUirxg,s1/Here, 83

(3) Y;%X «] can be regarded as deterministic for a given B if,
for both o ,
s |enaEmg Il I ECY | {ag |l
z Lo =mB « DX, %] af Ileim
S0 N T

_ ||E(Y*[X;*]l||ag i E(Y*{x,*]|||£m 5
- 3
T, cq ool 1

20X, 552

<
< “-[x,saj/“-tx,-J

Exampfes 0§ Sufficient Condition Fulfilled, and Not Fulgilled: —
Suppose 6t is sufficientiy small such thét, for virtually all 1
and j , Bi(j) is in just one Ha during the whole of (tB(j),'t+6t/2)
Suppose there is no recruitment during ( t-&t/2 , t+dt/2), so
' h t = t- . ' i iti
each ., st/2 Suppose eqch qBi(j) is a positive constant

(independent of & , 3 , t) when hB-(j)(X) is larger than a certain
1 .



constant (siie of first capture), and that qBi(j) is virtually

9x10 * 3x10° 1x102 4x10% 1x10' 5x10°

when hBi(j)(x) is less. Suppose N, g%vgs reasonable estimates
BN, |5 Byl 5 E(al
(1) Let . _
N,,=[ 0 0 1x10* 2x10° 3x10° 4x10 5
0 1x10°  2x10* 3x10° 4x10°  5x10 4
1x10° 2x10° 3x10* 4x10® 5x10° 4x10 3
2x10°  3x10° 4x10' 5x10° 4x10° 3x10 2
3x10°  4x10° 5x10* 4x10° 3x10® 2x10 1
‘ hx10°  5x10°  4x10* 3x10° 2x10° 1x10 O
| 5x10°  4x10° 3x10' 2x10° 1x10° 0 0
1
’ Let ABG z E(i?zli??(NaBI f Then
A, x[ 0O 0 6x10' 3 1x10 SXiQ'_
| 0 2 %1072 9 %1072 3x107" 1 5
l

7x10 " 2x10° 7x10° 2x10% 7x10%2 2x10°!
6 x10 % 2x10° 5x10°% 1x102 4x102 1x10!

5x10 " 1x10° 3x10°% 9x10° 2x10% 6x10°

| 5x10* 1x10°-3x10° 6x10° 1x1072 0

Since, for the two youngest cohorts (B =1, B = 2) ’AuB < 107

all a, ¢, and ¢, can be regarded as deterministic..
(2} In Example (1), define a new cohort by combining the

classes for largest size. Then

2x10% |

2x10

21

Zero
of

7 x10 !
3x10 !

0

0

! for

cohort

‘intervals of the 3rd and 4th youngest cohorts, and group the two size



N,, = 0 1x10°  3+5x10* 7x102 9x10 9
1x10%°  2x10° 344 x10" 5x10° 4x10 3
2 x10° 5 x10°  4+5x10" 4 x10? '3 x10 2
3x10%°  4x10° 5.4 x10" 3x10® 2x10 1

4x10°%° " 5x10° 4.3 x10" 2x10? 1x10 O

| 5x10% 4 x10° 3:.2x10% 1x10° 0 0|, and

Agy = 0 -  7x10°% 1x10" 2 6 3 x10
9x10™" 3x10° 1x10% 1x10' 5x10°! 2
7x107 2 %1077 6x107 7x1072 2x1070 7 x10!
6x107" 2x107 5x107° 4 x10‘2 1x1077 3x107!

5x10% 1x10 % 3Ix107° 2x107% 6x1072 0

5x10 % 1x10% 2x10°% 1x10°? 0 0 . S0 now

“ $1, » 9, and ¢,, can be regarded as deterministic.

{3) Let N,, be as in Example (1). Let

AC;B = { E ElaemB”HE(Y**HIaBHgm
R,,m=l ” E (Y**I ”
HE(Y**IHD«_BHE(Y**|||Qm‘
- 9g }/{U. /U"}
IE (vl I " : ‘

where Bgm S Eij are as defined in the previous subsection. The

numerator of A; is calculated by SIGIN (see Appendix I1I). In this

B

case, all the elements of AL* are > 1 , and most are >> 1 .

(4) In Example (1), group the 5 oldest cohorts and the 5 size
classes for largest size. Then N, = [ 6 x10® 1 x10° 1.70 x10°
4x10°  5x10° 4432 x10*

5x10% 4 x10%  3.21 x10% | ,
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1 - .
and A,, [ 6x10 % 2 9
1x10°Y 4 2x10
7x1072 2 9 . Hence (Y;;)l* can be regarded as

deterministic. All elements of A',, have been reduced.
(5) Let N, =[ 0 =~ 4+64x10° 4:31x10° 3x10°]
1x10% 9-28x10° 6+46x10° 2x10°

2x10°  139x10°  4-31x10° 1x10°

L:sxlo“’ 9-28x10° 2-15x10° 0 . In

-

this matrix there is less variation over the N, .8 than in Examples (3)

and (4). Consequently, the A are; in general, reduced:

aB
AN, ~[ 4x102 1x1070 2x107" 4x107! ]
] 1x1070 3x107 sx107! 8 x107!

2x10°' 3x10* 5x10! 8x10'!

| 7x1072 2x107! 2x107! 3x107!

(6) In Example (5}, increase every NdB by x 100. Then every A;B

is reduced by x10"}. So (Y;i)1¢ ’.(Y;L)Z* , (Y;i)3; s (Y;ijq* can be
regarded as deterministic.

Examples (1) - (4) illustrate that variation in a key might be
reduced by lengthening the size-class intervals, and, in an inverse key,
also by grouping cohorts for which £ is not to be calculated.

If the variation in the key is still too great ‘then the cohort
intervals themselves mlght be lengthened.

_ Determination o4 Key: —~ For Cases II and III, the key must be
known for each s sampled. However, for any specific fishery, the number
of instances for which the key is to be determined . might be reduced by
making appropriate assumptions on.the functional ‘form.of the key. For
instance, it might be argued that the key varies with t only seasonally;
or, for a non-migratory species, the key might be independent of zone -
but this will not in general be true, since in general food supply and
hence growth depends upon area.
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(1) Caleulate Key grom Growth, Reproduction and Mortality
Parnameters (Case I111): —

In general, the key depends upon the 4i and the Mj . Hence an
iteration procedure is necessary where estimates of the mortality .rates
are used to estimate the key which is used to obtain better estimates

-0of the mortality rates etc., to convergence. During any step of the

iteration, the mortality rates estimated by this model are the
functions q ,M, and from these q(h, x,t) ,M(th, x, t) must somehow
be deduced. For instance, it might be assumed that q(h, x,t), for
given X, t, is. a positive constant of zero depending on whether h is
greater or less than a certain value, and that M(h,x,t) is independent
of h . .

A direct key will depend upon the g3 , Mj essentially through the

average values q,M whereas an inverse key will depend upon the q; , My

essentially only through variations in the hy(x) for given t . So it is

anticipated that the direct key will depend upon q(h,x, t) ,M(h, x, t}
more strongly than will the inverse key. In fact, if M(th,x, t) is
independent of h, all members of a cohort are then subjected to
virtually the same natural mortality, so the inverse key should be
independent of M(h, x, t) to a good approximation, provided also that,
for every @, B, Pr(H=H,{ fish caught e B(j)) is the same for all j .

The direct key depends upon the relative numbers in the cohorts
at recruitment. The inverse key is independent of these relative numbers,
provided again that, for every o, f, Pr(H==Ha| fish caught ¢ B8(j)) 1is
the same for all j ' ' '

Exampfe (1): Deterministic Growth: — When all fish of one sex
(in the zone) £ A have the same growth curve and the Hy are chosen each
. -1
to correspond to a unique cohort, then X[*,S]* and Y*E*,S] are both

equal to the unit matrix, independent of q and M ; but the other keys
depend upon q and M .

Further Examples: —

More complicated keys are calculated using the previoué formulae
{see this Section - Expressions for ¢Ba ’XBa ’wsa ’YaB) and computer
simulation. The computer generates many possible values of ¢Ba » Xgg
wBa or YaB , and, for the inverse key, inverts each v, ’Y*[*;S] or
Yor¥. v generated. From these values the expected values (given R)

and the standard deviations of the key matrix elements are calculated.

Two examples are given below, involving respectively stochastic
von Bertalanffy growth and stochastic stepwise growth (as exhibited by
rock lobster). (This stochastic growth acts as a perturbation, causing

-1 : . . .
XE*,S]* and Y*E*,S] to depart from the unit matrix. Note that this

~
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departure will be smaller the smaller the time period, within a cohort
interval, over which the cohort is born; for then the size frequency
distribution of the cohort will be sharper.) It is not claimed here
that the assumptions contained in these examples hold for any definite
fishery. The picture presented merely represents a plausible starting
point for the application of the model to simulatée the cohort/size key.
In any particular application, each assumptlon should be investigated
and either verified or modified.

Possible techniques, for measuring the non—mortallty parameters
involved, are not discussed.

Example {2): Stochasiic von Bentalan{fy Growth: —
Sup?ose.each individual grows, from birth, along its own von

Bertalanffy growth curve, h = hm(l-e‘k(x—x°)) , till it dies. Suppose
that the probability of a fish € B(j) being born with h_ , Kk, Xo in
the range (hoo > h o+dh ), (k,k+dk) , (Xo , Xo +dX,) 1is -

fth, ,k,xc)dh 'dkdx, . (For instance, h,, k and X, might be
independently normaily distributed, whence we could write

(BB, (K-EKIP , (Xo-E(xe) P
2[ E}ﬁg O(k) )+[0(XO) ]J

£(h,K,Xo)= —ge e

(2m)*0 (h,}o (k)0 (xs)

In this case there would be six growth parameters for B(j) , viz

Ethy) , E(k} , E(xo) , o(h,) , o(k) , 0(x.).)

Let A(t)dt be the probability that a fish € B(j) was born during

(t, t+dt) i.e., fA(t)df =1 . 8(]) is simulated by givihg a fish
_ cohort ' ’ o
interval

a birthdate according to the probability law A(t) and growth parémeters
according to the probability law £(h_, k, x,). However, a correction
must be made for different fish having different chances of 'survival
' 'to recruitment at cohort age X, . For instance, if M(h, x,t) (for the
retevant sex)is a function only of X , written as M(X} , these
differences in chance of survival will be due only to differences in
age at recruitment. In this case. the chosen individual is given the

Xr _ )

- M(x) dx

probability e of being alive at recruitment, where Xy 5 Xp

are the respective ages at recruitment of the chosen individual and
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the youngest possible cohort member. Selection is continued till the
required number N, of members in the cohort (i.e., all alive at
recruitment) havé been chosen. {(No for a cohort can be estimated as

follows: £/(J 62 ) estimates N for a given t . Using the earliest of

these estimates available for the cohort, N, is estimated by

t o~

J qdg +Mdt
E eto )
dg )

25|

The cohort B8(j) is now allowed to grow from recruitment, the ith
individual, say, having probability dP; of dying during dt .

In this manner, as time progresses, the computer generates and
recruits each cohort, and allows each cohort to evolve. Hence A is
generated. The key is now calculated.

The above process is repeated many times, each time a new
possible recruitment set R being generated and allowed to evolve,
giving a new possible value of the key.

If R was known, then of course it would not be generated before
being allowed to evolve. This shows that the above built in '"variations"
in R are due to our lack of precise knowledge about R . Because of these
variations, the standard deviations of the key matrix elements calculated
in this way will overestimate the standard deviations given R . However,
provided these estimates are small enough to satisfy the sufficient
condition for the key being deterministic given R , not only can the
key be regarded as deterministic given R , but also the above
uncertainties in R can be neglected when calculating the mean square
errors of the estimates of the key matrix elements, namely the

Tz(Ei), in Section VIII.
Example (3): Stochastic Stepwise Growth: —

This example is based on rock lobsters, which retain a constant
length except at moulting, when the length increases by a finite amount.

Throughout this paper, for rock lobsters, let the "birthdate' of
a lobster be the time when it settles from the plankton to spend the
remainder of its life in the benthos. Thus, for instance, the phrase
"a lobster is born on a cohort interval' is synonymous with "a lobster
settles on a cohort interval" , and age X is measured from settlement.

Assume that the probability that a lobster € B(j) moults, when
its age ‘range is (x,x+dx), is of the form p(x, Xp)dx , where x, is
the age of the last moult. Let f(x,Ah)dAh be the probability that the
increment in h for this moult is in the range (Ah, Ah+dAh).
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Let A(t)dt be the probability that a lobster e B(j) was born
(settled) during (t,t+dt) . B(j) is simulated by giving a lobster -
a birthdate according to the probability law A(t) and allowing it to
grow stochastically as in the previous paragraph. As for Example (2),
a correction should be made for different fish having different
chances of survival to recruitment. This is done by giving the chosen

Xr
-{ M(x) dx
1
. Xy
individual a certain probability, e.g., e , of entering

the cohort (being alive at recruitment). Seléction_is continued till
the required number N, of members in:the cohort have been chosen.

‘The remain&er of the simulation of the'key is as for Example (2).

(2) Sample Catch fon Cohont/Size Structure o _
Estimate Key (Case 11)., — Sampling. is not necessarily at the time when
. the key is to be used, i.e. the catch sampled is not necessarily s
(2) (a) Sampfe Catch forn Cohont and Size: —

Example: —

Suppose M decreases because predator density is reduced by
fishing the predators. Suppose there has always been plenty of food
for the prey so their growth characteristics do not change, leaving
q unchanged. - ‘

So it is necessary to find the new M for the prey.

Suppose M(h,x , t) is inﬂepehdent of h . Group the oldér cohorts
into Tgr . Suppose, for all fish ¢ Iy, q; is independent of h and
they have ceased to grow; consequently, for\every_u .

Pr(H=H,| fish caught ¢ B' (j)) is the same for éll j . Hemce v} is
independent qf Mt , x » £). Assume also that q(h,x,t) varies with t

seasonally. Then Y., varies with t only seasonally.

Suppose one had sampled seasonally for cohort and size. As the . -
seasonal function q(h, x, t) and the growth characteristics are
unchénged, and as Y;i is indepéndént of M(h, x, t), thenh the séasbnal
. function Y.}, is unchanged. So it is not necessary to sample_again for

coliott to get & .
This is so even if cohort strength at recruitment is variable.

Suppose, in the cohort/size sample of a certain season;ym8 was

the frequency of H:fHa , I'=T_ . Let Yag = yaB/Y-B . Then
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5 1y .
Let T{(¥:1)g, ] E'ﬁ['(y_*i)sa-(ni)su ]2 . Then by Appendix III,

o~

G ] < l%aemsllll‘r“!lasllzm' by, Hapllye, g 5 (3,0 »

hy,, 1l y,. P

where Y,, is of order nxn and g45 = 0,1 ifi=j , 1#j . In this

Ba £,m=1

relation, y,, is estimated by ¥,, . Also,

ol ﬁﬂm) =E [02 (?Rm)

Y g (1Y
Y-m] =_E[_3ﬂgl__fﬂg] , which is estimated

Yem

DA ANCANES NTA

{2) (b) Sample Catch for Size [and Possibly Sex on Age) and
Estimate the Component of Each Cohont in the Size Frequency Function
04 a Fish Caught: ~

Example: —

Assume (for instance) that the size frequency function of a fish

L rheug 2
g {08
e
FB /-Z—Tl:l OB

i

, where ZwB =1
s
In a random sample of n fish from the catch let there be y, with H=H,

caught is f(h;w, ,u,, 0.}

Using Langrange's method of undetermined multipliers, w, ,u,, 0, can

be estimated by minimising ) (n| £¢h; o, , 0, , 6)dh - Yo)? with respect

@ o

to &, , 4, , 8, , subject to the constraint |} dig=1

I8
. _%' h-uB ]2
Let d)B(l (w,,,u*,o*) = L wB e o8 dh-/Lf(h;w*,u*,o*jdh
‘ V2T og
o B o

0gy i estimated by dpo (@, 5 0, G,) .
The mean square error of ¢Ba(a* ,Q,,8,) can be found as follows:

y, has the multinomial distribution

_ [ n! | Yo
z—(Y* »We s Uy s 0*) = [—"'""Hy ,] g[[ f{h;w_*,u*,o*) dh
a’o’ Hy
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T2(¢Bc¢ [6‘\)* ) ﬁ* ¥ a*)) E(Cbsa(m* » a* s-a ) - ¢’BU(’M* L) U* s O ))2

L2050,,0,,0,) (0, (6),8},8)) -0, (w,,u,,0,)F, which

Ve -

is estimated by ) zQﬁ;ﬁ*,ﬁ*,G*)(¢Ba(Q;,ﬁ;,G;)-¢8u(6*,ﬁ*,6*If. This latter
Vi ' :

summation is evaluated by the method of Appendix VI.

{11} Examples of £ fon Cases 11, 111

" For CaseslII III, when sampllng S at least one of age, sex is not
sampled. Hence size must be sampled, and the cohort/size key used. &
. estimates y .

If size alone is-sampled, an estimate &, , of ¢, , is obtained.
Then & = ¢p,C,p, oF (i3 )paCu.

If size and sex are sampled, an estimate Cule, 547 of Care 8pl , 1s
obtalned Then £ = XbsC Cw[»5Sp] OT (Y*[*,Sb])b*c*t-,sbj‘ (The fish sampled
for sex might be a subset of those sampled for size - cf. Section V(a)(ii).)

If size and age are sampled, an estimate C

A *Xp,+1 > OF Curxy,-10t
obtained. Then & =¢%*€*[Xb

- A
o1 OF (Y*EXb,*B}b*C*EXb,oj . {The fish sampied

for age might be a subset of those sampled for size -cf. Section V(a)(ii}.)

(When an inverse method is used and there are more size classes
than cohort groups, & is the arithmetic mean of variates of one of the
above types, each invelving a square inverse submatrix of order equal
to the -number of cohort groups.)

Example (1): ~ A random sample of size n is taken from s . Let vg
be the frequency of H=H, in the sample, o =1,2 only. et Eyr SC.. Y,/ .

Let £ = %1ﬂ.+¢mcm‘ .ﬂmn _
‘ (bpy - dpp)2C,.C, (e, -0)
E(E]s) =¢y,¢,, +op,C,, » 0°(Els) = : n(z jl)%

Example (2): — In Section VI is developed a more sophisticated
example of § for Cases II, III which is applicable, for instance, to
the Australian southern rock lobster fishery. In this example, the
catch s flows from the zone to markets in clusters which can be

conveniently sampled for size and sex. E(E|s)and o*(E|s) are functions of

C*E-'Sb](*) » Cor. éb](*) and the parameters of the sampling procedure,
where CaB(J)-is the number with H=H, ,‘F==TB in cluster J , and

Sy, is the opposite sex to Sp :
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(c) Genernal Propenties of &
Summarising Cases I, II, III we can write £ = EBiCi » 0i being
an estimator of cj , where

] for Case I:
By=1, ¢cy=c, i=1 only; and
for Cases II, III:
-1 - .
Bi==¢bi or (T**)bi and Cj=¢q., 50T

" -1 — .
By =Xpg OF (Yugw g 2ps 874 €5 =Cyp. g7 5 OF

- -1 -
Bi =¥pi oF (Yurxy,#20bi 304 C3 = Cyryy o3

'S is in general partitioned into clusters which are sampled for
age, sex and size. Kk EE(ElS) is a function of ¢, ,(#) and the parameters

of the sampling procedure. However, it is assumed that Z; is unbiased
given s , 50 Kk = }BjCy

Let gy =E(cq|A)
E(E|A)—E(K|A)"ZB1u =y b"u (see theorem of Section V(b) (i)

CV(u| = CV(Jazqq| < E 2(N| (cf. theorem of Section II - proof

of (2)) . Hence, assuming E (N|>>1 , U can be regarded as deterministic,
SO we can write E(E[-—E(u| =

v = g?(g[s) is a'function of c,,(») and the parameters of the
sampling procedure.

Since each fish.which can contribute to ¢4 has only a small chance
of being caught during &t , and since there are many such fish,
ci|A,—\Poisson (mean pi) . (.~ means ”15 dlstrlbuted as'™. ) Then,

assuming the cj to be independent,
02 (E[A) =02 (k|A) +E(v|A) =] Biuy + E(v|A)

Since p and the By are regarded as deterministic,
0% (£} =o* (u| +E[0? (£]A)] = | B{E(uy | + E(V]

TABLE 1
24 LANDINGS OF JASUS NOVAEHOLLANDIAE HOLTHUIS

€. GpgpW) () Cip g ) | 0D Cip g ) [C0U) Cip g )
163 14 117 15 310 34 334 31
51 4 80 5 287 31 279 29
94 4 55 6 275 35 178 21
25 2 82 10 387 42 219 21
89 10 173 16 531 51 408 34
41 4| 142 7 472 56 504 60
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VI. SCHEME FOR SAMPLING CATCH FOR SIZE

Suppose the catch s flows from the zone to markets in K clusters
which can be conveniently sampled for size and sex. For instance, for the
Australian southern rock lobster fishery such clusters are "landings', a
- landing being the catch from one or more boats unloading at one site more
or less simultaneously. Thus the techniques of cluster sampling (see, for

instance, Cochran 1963) can be applied to find estimators T; such that

E(Ci'5)=(%_=ciﬁ s ] .+ It is also desired to find an expression for
L o . -
v = 0?(E|s) , where £ = JB;z;

Assume-that clusters are, in effect, selected at random from the K
clusters of s . Suppose if cluster J is selected then ny fish are selected
at random from cluster J and the size class and the sex of each is
determined. Make nj proportional to c,,(J), say ny=fc,,(J) . For the jt©

cluster selected let ciB(j)' ,n: be the respective valués of CiB(J)-’nJ;
and let y; be the number with H= H; ,S = S, in the sample of size nj .
. i . k. ) n
Suppose k clusters are selected. Let cjp =.Zlcis(jy
J =

Expected total number measured from s is i = kfec,,/K  Le; fﬁ = fi/cC..
and f; =k/K . | f= f5/f, . (Note fi 2fy .) If f5 and f)- are decided,
then f is determined; and, knowing K approximately, k is determined.

. Let Ly = %%1 . c..(j)’%;l . Tj can be estimated if w! , W(j)',
ae j: J o . -

W' , W, the weights corresponding to na » €. (3) ,cl. ,c.. respectively,
are determined and if it can be assumed that c,, (j)'/n} ~ W(j)ﬂ/wg and

. ¢../c,, =~ W/W' . (Replacing the ratios of numbers by the ratios of weights
gives the estimator used by Stark and Halden 1966.)

Let BS(z4[s) =E(ci|s)-cy . If |BS(gyfs)/o(zyls)| << 1 for all f; ,
- f then z; is virtually unbiased. ‘ '

. For instance, Table 1 shows, for each of 24 landings, the estimated
total number of southern rock lobster caught and the number of males in
the length class 126-130mm. These landings were selected from the catch
taken in the zone area bounded by the Victorian coast, long. 142°E,
lat. 40°S, long. 141°E during the sampling interval, August 1969. (From
available data, these data were chosen for this illustration because of
the relatively large sample sizes. In fact, the taking of females is
prohibited during this month.)
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. TABLE

X, fy

2,08 4,17 6,+25 8,33 10,-42 12,+50

- 05 --20
-10 - --03 --03 -+05 - --l0 - 04
+15 - - 04 _ :
*20 - - - +05 - 07 - +15 - +06
-25 — - --05
£2 1 +30 - - -~ --11 «20
*40 - - - - +23
*50 - - -~ - - - .12
*55 - — - - - -
* 60 - - - - - —
*65 - - - - . - —
70 - - - - - -
.75 — p— —— p— — —_
*80. - - - - - —
-90 —_ -_— — — — _—
- 95 - - - - - -

1
(=]
-

1
.
o
¥a)

Regarding these 24 landings as the whole of s (in fact, s is
larger), a computer was used to repeatedly select k landings at
random and hence estimate BS(zils) for various fx using

E(;i|s) =, E(c'i

C. Sb]/c[_|s) , and O(Ci|S) for various fz , fy from

Cir.,5,] 1 1 K .
oz(ails):=cf.02[_73:_lL|s} +cf,[f—1]g{cu ;Lf;,(J)'SEZIS} ,

Cir-,5p30)
c.. ()

Cs ()
2 _ CiC-,53] _
where SJ e (-1 [1

] and 532 is the value of 83 for

the jth cluster selected. The program is listed in Appendix VII.

"Table 2 shows the resulting values of BS(gi]s)/ 0(;i|s)
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2
LANDINGS OF TABLE 1

k, fi
14,58 - 16,+67 18, +75 20,+83- 22,92 24,1.00
- 05
- 04 +03 - 00 - .04 00 00 | <10
|15
- +06 04 -00 - 05 01 00f-20
- 07 » 06 00 - 07 01 00!} 30 | f-
= +10 07«00 - +09 -01 . +00|+40 | ©
-+13 09 . 00 -+11 01 <00 | +50
--13 : -55
-~ +10 - 00 -+ 14 «02 00 +60
- 11 _ 65
r - - - 01 ~ 17 - 02 +00 | +70 -
- _ 0L . «75
- - - - 24 «03 +00 | +80
~ o - = 04 00 | 290
- - - - - <00 <95

6(Ly|s) cannot be éstimated from a sample.. So

x & Y5 .
let'C; = E-Z c . () - - E(C;|S) = ¢; ({unbiased).
j=1 al
‘o2 (gt]s) = ks, (z - ] Ifc (Jﬁ's2 L1 yhere
i Ty j=1 INE R W .e
-1 K ,

2 _ - ; 2. [,
S(B) ol ; (Cit-,SbJ(J) -¢4/K)*" . o®(zfls) can be estimated

J=1

if S; does not vary much with J and is consequently replaced

~

b

n ~3

3
. 2_q2 52
SJ For 1nstance, the value of {K le (SJ S(W) } / W)

1
y S 7
W K 5

J
calculated for the above 24 landings is 0-21. Then

o?(zils) = KS(zB) [ 1] +C--S(ZW) [%—ﬁ- %{] - This formula was used to find
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TABLE
o(zfls) /o(gyls) FOR

k, fy
2,08 4,17 6,25 8,33 10,42 . 12,+50
205 | 207
-10 ~ 247 2+3 19 1-8 146
.15 ~ 342
.20 -~ - 3-5 2:8 2:6 242
.25 ~ - 440
£ | 30} =~ ~ - 4e2 342 2:6
o140 ~ - ~ — 3-6 343
-50 ~ - - ~ — bek
.55 - — - — - -
.60 - - - - — —
<65 - - - — - -
-70 - .- — — - -
+75 - - - - - —
-80 ~ - ~ - . - -
-90 - — - - - -
.95 - - S— - — -

o(z]s) for these landings (regarded again as the whole of s) for
various fz , fi . The resulting values of O(c;[s)/a(gilsj , shown
in Table 3, are seen to be > 1 . So in this example 0(zi|s) can be

regarded as an upper bound to o(Zi|s) . It is anticipated that this

will be the case whenever the proportion of 'a size-sex class in a
cluster varies, from cluster to cluster, much less than does the
number in the cluster.

From a random sample of k landings from s , o®(ci|s) can be
estimated as a function of f5, fi . For let

k :
- 1 ) 7 yoo
S ONCIACES L T A
siw) = - % s2 Theﬁ E(s? [s) =82 E(sé [s) = S2
MO T 1(8) (®) 7 VLW (W)

55T
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3
LANDINGS OF TABLE 1

k, £
" 14,58 16,67 18,:75 20,83 22,492 24,1+00

R A . ‘ A_ - . - .05 :
1+4 143 1.2 11 1-1 1.0 . |-10

, ‘ .15
1-9 1.7 1-5 - 1.3 11 1-0 *20
: : ' ' .25
2.2 2.0 1+7 1+5 12 1-0 -30 | f-
2.8 244 2-0 1-7 14 140 40 | "
346 3.1 2+4 2+0 1+5 1.0 +50
3.7 : . 55
- 3.3 3.0 244 17 10 60
- 3+5 _ 65
- — 346 . 248 2.0 1:0 70
- - 41 .75
- - -~ 3.8 25 - 1+0 80
- — — - 36 10 =90
- - - -~ - 140 - 95

<
by
A

< ;'BiIO(Cils) by Appendix VIII,

A

Z]Bilo(czls) . So an estimate of the upper bound

i .
£ V7] 7B [ {Ks? (L -1+ ¢ s ('—1— ._1,)}‘/2 This formul

o is i iy (§ St (- E 1is formula
_ i k n 'k

can be used in finding confidence ranges of q , M for various

amounts of sampling (i.e. for various fz , i)
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VII. L, THE ESTIMATOR OF L

(0 £'/6 ']IEED{E(E/GgW

5 708 o= LU aevre 2ren ' n|3
E[log[gn/ﬁgn g E(E"/Gg"l} $CVE(E'| +4Cvi[e"| +ofcv(E'| +cv(e" ]}

L-4CV2[E'] +cv3[e"| +o{cv(' | +cV(E"|} . The leading
terms in the b1as tend to cancel (hence it is possible to have bias

~ {CV[E | + CV[E"I} ) . The above equation cannot hold if &'/&g’
: En/eg"

be infinite. This situation is avoided by not allowing thé variate‘E to

can

take the value zero. This would be a rare event if E(£] >>1 and its
omission will have neglible effect on the parameters of the distribution

of £ . So it is assumed that E(£|>>1 (i.e.u>»1) .

o og S48 || = ovE (gl o (e - 20 oveE fevier ] +ofeve | cver |
=Cv2(E' |+ CV2(E"| + ofcv(E' |+ cV(E"|}®, for, as s" is only
- very weakly correlated with s', [p(&,&"|]« 1 .
§ B2+ '
g2
B(Bicsv| =o?(E| . E(22] =E*[E](1+OV?[£]) .

E(Bici+vI/E(E2] = cv* (& »oevi[g]) ..

_ [ZBlcl

(ii) as an Estimaton of CV2(&]

) E()B3r +v]
E(£?]

Bir,+v
Let BS[ZQLFI

gz = gz . Then, by

Appendix I1(1),

B2
e R

2

2044V YB4Z v
R

By Appendix II(3),

[ZB itV E(ZBlcl vlf
£? EE?] |

CV2 ()Rizs+v| *QV2 (£2|-2p (]Bfz; +v,E2| CV(]BS 1, +v|cv(E?|

Vs
+0fcv(g?|+cv (B +v]]? f
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CV()Biz;+Vi ch(ZB§§|+CV(v| since E(JBjz;| >0 and E(v| 20 . (When
E(v| =0 then T is determined for each fish € S so V=0, and we can )
write CV(v| =0 .) Now CV(IBIz;| ~ CV(JB,z| =CV(E| , since both

cv? (ZBiCi[ and CV?2 (zBiCil are of the form '

iz,j mijc?o'v (ci,cjl /iz,j- wy4E (&g |‘E(i;jl where izj wij =1 . Also, v i:_; a

function of 'c*,',(*) . Let NaB(J) be the number € A that can contribute

: to,caB(J.) ,,.f.I.f;_NaB(J) >> 1, then CaB(J)IA A?f)isson (mean Hop (), say)}

(cf. Section V(c)). Hence, if E'[NGB(J)'|->> 1,

V2 [y g (D] +E™ Do ()]

A

E? '[NOVLVB‘(J._) | +E™ [“aB(J)l (cf. Sef:tion V(e})
<< 1 provided E[uuB(J)| >>1. So, if E[uaB(J]I >>1 {which

implies E[Ngg(J)] > lj', all a,R,J,then it is reasonable to assume

that CV(v| « 1, say ng| SCV(E] . So CV(JBZz; +v| scv(E| .
Y2, ‘ ' : '
. T[Eﬁgil*“i ~ cvieg)
BZz.+V
. G[a%—— o~ eviE| .
B2, +v
E[Z—-—l—gzl—— = cv2(g| +o(cv*[E])

(iii) _ .
Let B; , & » V' and B; » Tf » V" be respectively the values

of By ,Z;,Vv corresponding to s' and s" .

-~

Let K, = (&), ¢, ..., 2", T, ...,V , V") . Let

£(X, ,B,,B,

.y gyt T (BUR
)Elog{.i /Sg } 12(51) Li+V 1MBi) ;l+u_ Then

-0 B L R T
E[L(K, , B, ,B))] = L+ofcv(g'} +cv(g"|}® . However, the estimator of L
used will in general be of the form L= LK, , B, B!) where B, ,B , B

are estimators of B, BL s B: respectively. (For Case I, ]§* =B, =1.)
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VIII. CALCULATION OF t% (L) = E(ﬁ—L)2'

o?[e(K, , B, ,BI)| =Cv2(&'| +cv2(g"| +ofcvie' | sV (E”|P

2 [L(K, , B, ,B"}| = E[L(K, , B, , BY-L|?

cv2(g' | «cvi(e"| +ofcv (e | +cve" | P

_Tziﬁ(ﬁ* , B, , BY)| is estimated by z($%f?i*“' " Zﬁ%%%}giiff.. In this

expression the terms in v' , V' are due to the catch being sampled and
the other two terms are due to the catch, for a given effort, being a
variate. '

| {a} Case 1
[Z(B;L)"’ SR Z(B’i')zz;;w"\ |
GEE GIE

(B{)zcr+vr' (B?)ZCU+V" ]
[Z ’{LE.)% e }E,.,i [s CV(E' | +cv(e"]

. rz(il-éo{CV(g'| sovieny

(b) Cases 11, 111
L is derived from K* and E; ,ﬁ: (Fig. 6). Let
t2(By) =B(B;-B4)? , KyzE(Ky] . Now
L=2(K, ,B.,B") +£L(K, , B, ,BN-2(K,,B,,B").
1@ < 18R, , B, B} +EHz(R, , B, , B, by Appendix VIIT,
an

)
B, ,B,)

z(K, , B! ,B!) = 0 . Hence

where Z(R* , E(ﬁ; ,ﬁ; , B -ﬂ(ﬁ* ,B; , B,) . Note

*

B{z(K, , B, BN}* = t*{z (R, , B, , B} =e{z(R,, B, , By -z(x, , B , B}

By Appendix IV,
3L (K, ,B.,B")

3L(K,,B',B")|
9L * T(BE)'+Z\5§2

ek, L 8L B0 1[5

aH

T(Bi)

+O[JT(BD)+JT (B)+Jo(Ri]]?

3L(X, ,B,,B")

2 B 3L(K,,B,,B))
3B

o
3By

+O[JTB+IT(BD+Io(Ryl 17

~n

st(D) ¢ t{ek,,B,,BL) +) T(By)

T(§£)+z



;?K:i

Al All
5*,38* : ' =

t—)

~

. ”~ -~ A’ "
Fig. 6. Flow for derivation of L from K  and B, ,B, for Cases II, III.

Al AN A A
By , By€ r q, Me—1L,
U

*

~ A

Fig. 7. Flow for derivation of B, ,B: from L, and U, for Case III.
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This formula is used to find an upper bound of T(i). The
various terms are estimated as.follows:

An estimate has already been given for T[£(ﬁ*,BL,B:)l .

' n
%%EK*’B*’B* is estimated by
i o ‘
?.%(K*sﬁ'*)ﬁf;) = E_':L + ﬁ;_c'i - (Z(ﬁa)z §3+U']C']'. where
/\’ ~ ~ P b}
3By g (P €' :
e = ]Bizy
3%(K,,B' ,B)
gﬁh *27x2Tx7 {5 estimated by
i
. A~ A) A " an_n an (T
au(k,,BL,80  ci Bigg  (QB)Pci+vi)eg
o8; TR T gy e
e = 184et

(i) Case IT

Examples have previously been given for the evaluation of
r(ﬁi) for Case Il (see Section V(b)(i}).

(i1} Case 111
For Case III, T(ﬁi).is evaluated (with T(ﬁ)) as follows:

ﬁ; ,ﬁ: are derived from i* , Where ij refers to the j&
cohort-time pair, and from an estimate ﬁ* of the relevant

non-mortality parameters U, (Fig. 7).
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Examples of U, are afforded by Examples (2), (3) of the
calculation of the key in Section V(b)(i). In Exampier(ZL.the 15
are No , for each of the various cohorts that can be represented
in s' and .s", and the parameters of the functions A(t) and
f(h,,k,xe) . Fof instance, the parameters of the latter are
E(he), E(k), E(Xo), o(hs)}, o(k), 0(Xe) . In Example (3),
the Uj are the N, land the parameters 6f the functions .A(t] s

P(X,Xg), f(x,4h)

An upper bound to T(ﬁ&) is given by

38} (L, U,)

Pl

~ ~ aﬁ" (L*’U*) |
T(BY) s} (L) +Z’-—1
J 'aLj T 319U

1(U;) , by Appendix IV.

Similarly for 'r(ﬁg) .

Bﬁi(L* »U,) is estimated by 8§£(i* ,ﬁ*) which is evaluated
numerically by varying fj whilst keeping the other ﬁk , and ﬁ* ,
constant. 93Bj(L, ,U,) is estimated by Bﬁa(t*; ﬁ*j which isr
evaluated numerically by ﬁarying ﬁj whilstrkeeping the other ﬁk s

and L, , constant.

First approximations to the upper bounds of the-”;(i)
are found by ‘substituting Tt [Ej (12; ,B'* ,BU)[ for 1 (ll\,j) in such

expressions as above for the upper bound of 'r(ﬁg) , and then
substituting the resulting values in the expressions fof,the upper
bounds of the 'r(i) . These first approximations are then substituted

in the above such expressions, etc., to obtain the second approximations.

This procedure is repeated to convergence.
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No , when not estimated independently of ﬁ ,ﬂ, but as
indicated in Example (2) of the calculation of the key in
Section V(b) (i), is derived from £ = ZBka (for some sampling

interval} and L, (to estimate q ,ﬁ) . In this case, by Appendix IV,
an estimate of an upper bound of the root mean square error of the
estimator No is given by

T(No) = E%(No 'No)z < %Et) T (g) +z go (E’L*) T(f‘k) »
g k'oLk

where T2(£) E_E(g -u)? . Writing £=£+@E-£) and applying
Appendices VIII, IV gives

1(€) ¢ 0(&]-+Zukr(ﬁk) which is estimated by

Mo (£,L,)

— is estimated numetically
dlk

(T BRge+ w2+ Ty -

by varying fk . These expressions for the upper bounds of the T(ﬁoj
‘are incorporated into the above iteration for the upper bounds of
the t(L) ; - the initial substitution for T(N,) omits terms in T(By) .

IX. CONDITIONS UNDER WHICH t2 (L) FOR COHORT b AND TIME PAIR
t' , t" CAN BE CALCULATED BY THIS MODEL

These conditions are that, for cohort b and for each of the two
sampling intervals &t' , 8t" :

(1) gég +M38t «1
(2) E| >» 1

(3) (For Cases II, III) the cohort/size key can be regarded
as deterministic.

3 .
Note that (1) and (2) imply EZ(NHI > 1., ‘and that (2) implies
E(N'- N"| » 1 ‘

(1), (2), (3) are initially assumed to hold, the consistency
. of this assumption being checked on calculating q,M .



1f € = Zﬁigi > 1 , (2) is assumed to hold.

To test (3), wuw/u, 1is éstimated by E/c; -M.'For Case II
for the direct key, E(Nabl is estimated by Buca/(q(an)ﬁg) , where
q(a)B is the mean value at t of q; for the NaB fish which can

contribute to .C,4 . Hence E(Buf,/E%(Ndb| is estimated by .

(ﬁaq(a)b Sg / ga)li ) q(&)b must be estimated 1n some mahnf{r from q .

For instance, it might be reasoned that el is independent of « .
Similarly, for Case II for the inverse key, E(Ngmf is estimated

by ?Qm(?;t Culp /(qu)mﬁg) , where ?** estimates Y,

1
- E(ng],/Eé(Ngm] is estimated by

A ~ 1 i ]
{Y&nq(g)mﬁg,/(Y*ic*)mY’ . Likewise,

) \

2 . .
E(Yitxm(*rsbjl/ E -(NHtXm(*stj’ 1s estlmated by

: : -
~ A-l ’i )

. . _
E(Vprx, 51! / B Marxy,8,7] is estimated by

: ‘ : o
{YEEXb,SmJ q(g)txb,%njﬁg / (Y?Exb,*jc*)m} - For Case III,

calculation of standard deviations of key matrix elements has

been discussed in Section V(b){i).
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If conditions (1}, (2) or (3) are violated, the remedial
actions of Table 4 can be attempted. '

TABLE 4

REMEDIAL ACTIONS TO CORRECT UNFULFILLED CONDITIONS

Remedial action

Unfulfilled condition =
o (a) (M () (d)

(1) qég+Mét <1 X = = =
(2) E(| >» 1 X X — -
(3) key deterministic —_ X X X

{a) Redefine sampling interval &t .
(b) Redefine cohort interval At .
(¢} Redefine size class intervals (Cases II, III).

{d) Group cohorts for which £ not to be calculated
{(Cases II, III - inverse key).

Example: —

The condition q &g + M 8t << 1  can be taken as the region
{of the first quadrant) of Figure 8 to the left of the line

q 6g + M st = -1

Assume E(u| is proportional to &t and also to the cohort
interval for cohort b (i.e. 4t). Then the condition E(u| > 1

can be taken as the region above the curve At 6t = 190 , where
Aty 6t gl

EI is the value of é corresponding to At, , &t

Hence the shaded area of Figure 8 represents the domain of
it , At in which the conditions (1) and (2} are both satisfied.



At

<

69 + M 6t= -1

ot

Fig. 8. Domain (shaded area) of &t , At in which the
conditions (1) and (2} of Table 4 are both satisfied.
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X. OPTIMUM LENGTH OF SAMPLING INTERVALS, COHORT INTERVALS,
AND SIZE CLASS INTERVALS
Given that the above conditions (1), (2), (3) are fulfilled,

what are the optimum lengths of sampling intervals, cohort intervals
and size class intervals?

The 3r2(£) will depend upon the sizes of these intervals. In
addition, the following points are noted:

(i) Sampling Intervals

Smaller sampling intervals will give more information on g, M
for a given cohort as functions of time.

(1i) Cohont Intervals

Smaller cohort intervals will give more information on q, M at
a given time as functions of cohort age.

(i11) Size Class Intervals (for Cabes I1, 111)

The accuracy to which the size of a fish can be measured sets
a natural lower limit to the length of the size class intervals. The
following example shows that making the size class intervals this

small will not necessarily minimise the Tz(i)
Exampfe: -

Suppose A consists of two size classes H; , H, and two cohorts
(of the same sex) with ages X;,X; at t . Suppose s is found to
contain c¢;, in H; and c;. in H; . Assuming the paB (= Hyg /u, )

to be known exactly, H.; can be estimated either by £, or by &, ,
defined as follows: '

€1 = (Pll‘*pzl)(C1.'+C2.) = EiL C.. does not use the

cohort/size key.

£, = E??%liié cy., + ﬁ;;éiﬁzz Co. = BiCi. +B,C,, , where
By = E%% , By = Ef% £2 uses the cohort/size key.

Both are unbiased:
E(6:]0) = 5w = ug
B(E M) = By o B2y e =
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Which has the smaller variance ?:

0% (€2]8) - 02(E1[A) = BPuy. +Biua. - (52w,

= Bfui. +BZuae - (BiMye + Bolaa)?/ ..
= EI_U“_Z (By -B,)% 2 0

So, in this example, using the key'hés increased the variance
of £ unless B; = B, . However, the example is unrealistic, since
in practice the Pyg 2are not known exactly and sampling s for size
supplies more information. But there will be no more additional
information after the size class intervals are shortened past a

sl -
-3

certain point, for CV(c,,|A) increases as p.

XI. GENERAL SOLUTION OF THE EQUATIONS
. H
N .
log[-ﬂ—”-]+ qdg +Mdt = L
* 3 AR | _

‘.Q.

The time pairs for a cohort are chosen, without loss of generality,
by pairing successive sampling intervals for that cohort. For, from the
resulting equations, the equations for any other choice of time pairs
" can be derived. '

For this numerical analysis it is convenient to consider the whole
time axis partitioned into intervals 8t of which the sampling intervals
are a subset. Denote the &t by 6&t; , 8t, , ... from the first-sampling
interval &t; . For d&t;, let 6gDi be the effort in zone D (D=1,2, .:.)
and let qp; ,My; be the values of q,M for cohort b at the midpoint

tw
Let cohort b be in zone D(b).

Let Q; be the point on the curve of Figure 1 corres onding to
i P _ ponc

Y -
Suppose-Sti , Oty are successive sampling intervals for cohort b.
, Q; : ‘
i
The function log o + q dg +M dt , the value of which is Lbij say,
_ . bil -
] Qi
cohort b

is replaced by the function Ebij of qp; » Ap, 141 2+ > Abg > Mpis My, 547 »
<o » Mpj , which is defined as '
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Lpiy =

Wi
—
Q
m
—
Kl
o
py
| S

8 . .
N3 oty /4 [q —q_}
2 bi 61:1 /2 + 5ti+1/2 b,1+ bi

S8 Iin T O8e1 b, 5o
N ' GgD(b)j q ) (Stj [4 I:q ~q 7
2 b gty /24 6ty /2 LUPI B3

\
+ ?..Ei‘ M .+ 6ti/4 [M . - M s ] .
2 bi 8ty /2 + 8tyy, /2 b,i+) bi

+ .+
HEt My e S M

8t §t. /4

+ ._....l M - J . "M R -M . :|
2 bj §ty/2+ 8ty /2 L b1 bii-l

log |-bt % [GG +6T, M } (Note that
= og [— | + .oy G . , say. ote a
quj Kei D ijk bk ijk bk .
subscript elements of more than one digit, or more than one term,
are separated by commas.)

Even if the values Lbij were known exactly, the equations

' Kbij = Ly could not be solved uniquely, because there are too
many unknowns qp; ,Mpj . So assumptions must be made on the
functional form of the q and M values for the population in
question. This in effect introduces parameters z, = (Z1,Zz,...,2m)
such that q; = q;(z,) , My; = M (2,) . (As an example,

the functional form of q and M for rock lobster fisheries will

be discussed later.) On replacing the Uy My by the functions
qbk(z*) , Mbk(z*) in the Ebij , 1t is assumed that there are
now many more equations than unknowns 2z, ,...,2Zy - 5o these

equations will contain redundancies.



However, if the Lbij -are replaced by their estimates,

the Lpgy then these redundancies are not only removed but,

what is more, the equations become inconsistent. The solution
E; = (21 4,22, ... ,2y) suggested here is the best fit solution
in the least squares sense and is defined as follows:
Let -dy (2,) » My (Z,) be of the same functional form as

Ay > My, but with_i* ‘replacing z, . Let Ebij be of the
same functional form as Ebij but with abk , ﬁbk replacing
Ok s Mbk . Then 2* is' found by minimising E (Ebij - ibij)z

‘ ; : 05 7

.with respect to 2, , i.e. by solving 3 7} (Ebij“ ibij)z =0,

3z, (i) |

£=1,...,m . This system reduces to

Gy |, 3 - e

(i Ay
B2 I A 3, - . of _
(22 /8- 522 /8 L [ 22 ¢ OTag gt ||} = 0
3zy bi 3%, bj o, [ Dbk 2z, 1%3z,
£=1,...,m . This is a system of m equations in the
m unknowns Z,,...,2; . Having solved for %, , then

the estimates of the qbk and the Mbk , 1.e. the abk and

the Mbk , can be calculated.
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A A L
bbij = 9 {gj-9y) + Mty

Fig. 9. Illustrating method for finding g, M when qu, , M, are constants.
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Example (1): —

Let q. = constant = q , say, all b,k M, = constant

= M, say, all b, k. So m=2, z, =q, z.= M . Hence

~

A = a , say, all b ,k and Mbk = ‘ﬁ_, say, all b ,k . Then

Ebijl= q(gj —gi) + M(t(j) -t(i)) , the equation of a plane (Fig. 9),

- where gk = g(t(k))

_ A A 2 " A )
Minimising E [Kbij - Lbij] with respect to gq, M gives
i) ™ ' . | :

wza)[[gJ 8)d * (tc:n )M -Tyylley -8l =0,

bé [(g, -g)a + (ty ~t W -Lygg [ty -ty 7 =0 . The Q.

~

M satlsfylng these two equatlons give the plane of best f1t to
points Lbi] ‘

: . g,
If also g' exists and is constant |equal to ——2 | then

~

Ebij = Eft(j)-t(i)) , the equation of a liné; where Z = qg + ﬁ

The above two equations for q , M both reduce to

bz [Z(t(J) t(l)) Lle][t(J) t(]_):l . The Z satisfying this
ij) L

_equation gives the least squares regression. line fitted to the

points Lbi] . Gulland (1969) describes essentially this solution

for this 51mple tase, but instead of 1. uses essentlally

f
thé more -biased log{g /Sg }
- - KE," /6gll
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Exampﬁe‘(Z)} -

The purpose of this example is to show how the method of
Murphy(1965) can be regarded as a special case of the general
model described herein.

First note that if g' exists, except perhaps at isolated
points, then the substitution F = qg' can be made in the basic
E(&'/dg']
E(E"/‘Sg"i
eliminates the effort explicitly, but information on the functional
form of mortality rates is lost. The resulting transformed equation

equation L = log { } of Section IV. This substitution

[E") ¢
is log [%J + Zdt = log{
Q!

are the values of F at t' ,t" respectively.

E(g'/8t]

-——————_—} , where F’' and F”
E(E_,”/(St”|

Murphy made just sufficient assumptions to solve for mortality
rates without using the least squares method. Also, he considered
the catch over'an extended (unit) time period - cf. the requirement
of Section IX that for a sampling interval q&g+ M&t << 1

Consider cohort b only. Let M = constant. Within a certain
unit time period, which is here divided into the sampling intervals

8ty , ..., 0t

Likewise, within the next unit time period, which is here

n ¢+ @assume g' exists and F = constant = F, , say.

divided into the sampling intervals &t,,,,..., &t assume g'

n *
exists and F .= constant = F, , say. Let Z, = Fy +M , Z, = F,+ M,

The least squares method can be avoided by combining the
transformed equations for the various time pairs in the following
manner before solving:

Let-E(i),_g(i) be respectively the estimators £ ,2 for Sti . Let

. ] N n R
E, 2 Y Epsy. E,3 T By, £,% 3 £, =V £,
1 igg w { i§2 @ ‘ i i= £+1 (1) 7 i i=m+1 (1)

When &tj is in the first unit time period, the above transformed
equation corresponding to time pair ty) » t(4) can be written

Bl _ 8y -2a(ry) -t(g)

E(a(g)i - EE; € . Adding (integrating) such equations
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. _ . Byl Z -Z,
~for i =4£,...,m gives E(E,] = 5%, 2, e (1-e )
8tme
(g m+1}l Zz 2 -Za
Likewise, E(£2] e m+122 (1-e }
’ ' (Stg 6tm+1
E(g(m+1)| F2 5tm+1 'Z]_+21 2 'Zz 2
Also, ————— = =~ 3o
Byl F1 om
F, =Lz
CE(E 7, (1-e) e—z1
__E(F,Il F—--’=(1 -e-z‘)
Zy -
F _2 ~
| g 3 (e ™) 3,
Relationships of the form 2% = 22 — e were
{'; E_l. =L,
7 (1-e ™)
i

used by Murphy (1965), where F Zi estimate Fy , Zy respectively.

If the E(i) are not combined as above, then the

(transformed) basic equations will be inconsistent and the least
squares method is appropriate. This method minimizes

”~

F | St Sts,,

bi A i ~ i+1 ~) 2
L(log == |+ Zpy 5= + Ty 50, 5 = Ly 140 ) » where
i Fp,i+1 . .

ﬁbl ,Ebi estimate F, Z respectively for t¢yy » and Lle has
the same form as Lb1J (see Section VII(iii)) but with &ty » 6ty
replacing agD(b)i s GgD(b)j respectlvely.

It is seen that combining the 2(1) results in a loss of .data,
for i=4£2,..., m-1 in the least squares sum is sufficient to
solve for 21

[Also, as noted in Section X, smaller sampling intervals

allow more detailed information to be obtained on q, M for a given
cohort as functlons of time.)
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XII. CALCULATION OF CONFIDENCE RANGES OF THE.
qbk-AND THE Mbk
First the goodness of fit of the assumptions on the functional
form of q,M must be tested. If the fit is satisfactory, then the
confidence ranges can be calculated.
(i) Testing Goodness of Fit

Let there be n cohort-time pairs (bij) and let m be the

order of z, . Assume that, approximately, each ﬁbij — normal

{mean Lyyy » variance Tz(ibijﬂ' and that the variates ibij

are independent. Divide the possible values of ibij into m+2 ranges
of equal probability. Let Oy be the actual number of the n cohort-
time pairs for which ibij falls in its k&b range. Then

me2 O -3)°

_omk2 2 :
n/(me2) X (m+1) , wherem+1 is the number of degrees of

k=1

freedom,

Now to find the ranges of equal probability the estimates

ﬁbij are used. These estimates are based on the parameter estimates

Z1y ..+ 52m - Let OL be the value of O, for the estimated ranges.

~ %% (1) . So, as

Priy?(1) 2 3+8] = 0405, the data are compatible with the

assumptions on the functional form of q ,M if

o (04~ 20
n/(m+2) < 38
k=1

(The above x* approximation is satisfactory provided

—~—— > 5, i.e. number of equations > 5 X number of unknowns + 10 .)



55
(ii) Caleulation o4 Conﬁi&ence Ranges

o On the assumption that each ﬁbij ~ normal {mean Lbij:

va;iance Tz(ﬁbij)}, the joint frequency funétion ,f(i***)-is

a known function of the Lbij and the Tz(ﬁbiﬁ)
T2 (abk) ZE (Qbk - q‘bk)z = Jf(L;**) (a],jk - Qbk)z dL;**V ot
This integral is evaluated by the method of Appendix VI.
. o ' “ 2] . s e s p
For each L, , selected X_(Ebij' Lbij)z is-minimised to find
_ (biJ) :
Gp - Uy and £(L,,,) will depend upon L,

, which is not

known. So i*** is used instead of L,,, and abk instead -of

bk -
Then, by Appendix IX,
~ ! s ~ L ) ) ~
Pr{[qbk -qbk| < (m? +1)4T(qka} 2 PTquka(qkal <nag (qbk)}

So, if qbk,—\normal (which is assumed to hold approximately),

then with at least 95%. confidence

|Gy~ G| < (14962 + )7 16, = 2:2 1 (G

Similarly for ﬁbk
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XIII. FUNCTIONAL FORM OF q AND M FOR ROCK LOBSTER
FISHERIES

It is not claimed here that the following assumptions hold for
any definite rock lobster fishery. The picture presented merely
represents a plausible starting point for the application of the model
to such a fishery to estimate q and M values. In any particular
application, each assumption should be investigated and either
verified or modified.

The lobsters are caught in pots. The unit of effort is one
"potlift" which consists of laying a baited pot and retrieving it some
time later. It is assumed that a potlift has an area of effect, A, ,
within which a lobster has a probability p of being caught by that
potlift. The potlift catches no lobsters outside Apg . Assume Ag to
be constant for all potlifts. :

Assume that fishing is only on discrete grounds (associated with
the reefs where the lobsters live). Assume that the fishing operations
on a ground: consist of a sequence of '"trips', a trip consisting of a
number of pots laid and lifted (by one or more boats) more or less
simultaneously. Assume that in a trip the pots are laid randomly over
the fishing ground area and that there is negligible overlap of the
Ae. ' .

Assume that when the cohort interval of a lobster is recruited
that the lobster is on a fishing ground from which it will not migrate.
" This assumption is supported by tagging experiments on Jasus
novaehoflandiae Holthuis (Fielder and Olsen 1967) and on Jasus
Lalandi{ (H. Milne Edwards} (Heydorn 1969). Note that the species of
the genus Jasus recognised in this paper are described by George
and Kensler (1970).

Consider the entire fishery to be partitioned into zones, each
zone containing one or more whole fishing grounds (Fig. 10). A zone
is the smallest area for which regular effort statistics are collected.

Let each cohort interval be one year long. Let the birthdate
of each cohort be on the same day of the year, so cohort age specifies
Season. ‘

Call a cohort each subset of those members of R that have
the same cohort interval, are of the same sex, and inhabit the same
zone from the date that the cohort interval is recruited.



o Fﬁhmq :
' Eaizrounds |

Zone .

1%

Fig. 10. Illustrating assumed structure of a rock lobster fishery.



58

Consider the ifh lobster of a cohort in a zone of total fishing
ground area A, which lives on a fishing ground of area A; . Suppose
time interval dt consiSts of subintervals dtj , J=1,2 ,:.. during
each of which there is just one trip to Ay . Suppose the j™ trip
contains dggj potlifts. Then

Pr(lobster i survives trip j| alive at beginning of dtj) =

1 Aepid - M, dt h ‘s p for lobster i

" Pr(lobster i survives dt| alive at beginning of dt)

Aepi '
=I(1-~-——4dg,.. - M;dt;
3 ( AG gGJ i J)

~ Pr(lobster 1 dies during dt| alive at beginning of dt)
Asp \
= 1-T(1- == dg,. - Mydt;)

J A, 763

A-p. 7 : ;
= =1 dg.+ Mjdt+..., where dg. =) dg.. . The higher order
AG G G ; Gj .

terms are neglected. Assume the potlifts are being distributed
randomly over the entire fishing ground area of the zone so

dgG /AC'= dg/A , where dg is the number of potlifts in the

zone during dt . Then ‘ .

Pr(lobster i dies during dt| alive at beginning of dt) = q;dg + M;dt ,

where q; = fg?g
i A
It is reasonable to assume that the probability of a lobster
entering a pot to eat the bait will depend upon the natural food
available, and that the latter will depend upon the locality. So
assume p4 depends upon ZzZone.

Hickman (1946), working on Jasus novaehoflandiae Holthuis, and
Heydorn (1969} report an annual biological cycle involving reproduction
and moulting. Feeding activity is related to this cycle; for instance,
much fewer lobsters enter the pots during the mating and moulting seasons.
What is more, the cycle is different for males and females; for instance,
tht different sexes moult at different times of the year. Hence it is
assumed that p; depends upon the sex of lobster 1 , and the season. A
seasonal restriction on catching one sex {i.e. no berried females to be
taken, or a closed season for one sex) would have a similar effect on py.

p; depends also upon the size of lobster i . However, it is
assumed that pyg is independent of size once the lobster is larger than
a certain size {(related to the size of first capture). Such a lobster
is called "fuil sized".
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Allow only "full sized" -cohorts (i.e. with v1rtually all members
- full sized) to enter the equations to be solved for §, M . For such a
. cohort, then, it is assumed that q depends (through the pj) upon the
sex, season and zone. To reduce the number of unknowns still further,
assume that ¢q is of the form «B , where a depends upon sex (S) and
season, and R upon zone. The average of the B over the zones is-
arbitrarily made unity (expressed as B=1).

Hickman (1945) and Heydorn (1969) note that . the exoskeleton is
soft at the moulting period. So it is plausible to assume that the
lobsters are more susceptible to predation during this period. Thus

_ Heydorn (1969) remarks that hagfishes or dogfish have only been seen
attacking damaged or moulting rock lobsters. As ecdysis occurs at a
definite time in the annual biological cycle, assume that My depends
upon the sex of lobster i , and the season.

It is alsc plausible to assume that younger lobsters are less able
to defend themselves than older ones and are therefore more susceptible
_to predation. Thus Heydorn (1969) remarks that rockfish appear to be
capable of inflicting considerable damage on the early adult stages.
Hence assume My depends upon the age of lobster i

So, as cohort age specifies season, -it is assumed that M for the
cohort depends upon the sex and the cohort age (X)

To reduce the number of unknowns still further, write o as a
Fourier expansion in t , and assume M can be written as the sum of
a Fourier expansion and a polynomial in X . So write

— - ! )
a-—asﬁ) Qg g +Z<%nﬁnmwnt)+<%nmsannt) m@

M= mg(X) = Z mSn51n(2ﬂ11X) + mg, cos(2mnX) + Z mg X ,

. nN=1 r=_
where 't and X are measured in years. Hence
Z, = Ogy, Ogp ,a%n (§=1,2; r]fl s e ?E)
Bp (the value of B, for various zones D) ;

mSn,m:Sn,m'ér (§$=1,2 ; n=t,...,m; r=0,...,n)
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Q"

+J qdg+ Mdt = L FOR RoCK
Ql ’ .

LOBSTER FISHERIES

. ~1
XIV. THE EQUATIONS log [3-;
- q

With the above assumptions on the functional form of g and M,
the least squares method reduces to solving the followlng equations

for 2, = 8,,,8., , B, ,f,, ,f,, ,A”, . In writing these equations,
the abbreviation

(t(i)) J . N . .
Fpiy = logj e |t L [8Cn(b) 11k Syt Boewy* STagic Mg, (Xpi )]~ L
8, (trsy) . b

Sb &) k=1 : ; :

is used, where &S(t) s ﬁS(X) are of the same functional form as og(t) ,

mg (X) but with Z, replacing z_, and. Xps is the age of cohort b
at tygy - Also, the function 6 (y,z) = 1,0 if y-*z , Y#2Z .

£, m, n are as in Section XIII. Then:

1 : 1 l J . A } = =1,2
(bgl)ﬁ(sb ) Py {&sb(t(i>17-@sb(t<j>) "L e [ 700 ST

3

Sln(zﬂrqt(l) sin(anlt(j))
Z S(Sb,S)Fblj{ (t(l)) B &Sb(t(j))

{bi3)

j ~
+ k:ziﬂ GD(b)ijk sin(27 n tiey) B’D(b)} =0,

cos(2ﬂ11t(i)) COS(ZWTWt(j))
§(Sy,S)F { ° _©
sza} (555 Ggy (t(qy) Ggy (t(s))
j ~
! kgiéGD(b)ijkws (2mnteg) BD(b)} =0,

]
CDlZJ)G(D(b) D)Fbl_-;{ kEiGGD(b)ijkaSb(t(k))} 0, D=1,2,.



j .
i3 =
| $=1,2; n=1, , m
J
) G(Sb,S)Pbij{ Z_ﬁTijkcos(2ﬂ11ka)} =0,

(bij) k=i

: J :
L 8(Sp,S)Ppigy ) OTyjeXget =0, S=1,2; r=0,...,n
(bij) Tl O : '

The following iterative method of solution is suggestéd here:

Substitute an approximate value for B, in the first three and
last three sets of equations, which are then solved for approximate

A0 ~ o~ A1

o ]
values of d,, , d,, , m,, , m m

w% » M. . This solution is then

substituted into the fourth set of equtions, each of which is then
solved directly for a value of one of the éD .- The next order
approximation of é* is:then obtained from these latter values by

making B8 = 1 .

The process is started by substituting %D =1, all D, and

is continued to convergence.

Within the above iteration, the first three and last three sets

of equations are solved by the following process which is also
iterative:

Substitute approximate values for the &S(t) into the terms -

in log &S{t) and in lifﬁs(t) . Solve the resulting linear equations.

ol o~ AL . ~H

for the next order approximation of &,, , &,, ., M, , M m

The process is continued to convergence.

k% * % "
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Example: —

Suppose there are 3 consecutive sampling intervals,
each of 1/2 year duration, and 4 zones sampled as in Table 5.

TABLE. 5
PATTERN OF SAMPLING IN TLLUSTRATIVE EXAMPLE
"OF APPLICATION OF MODEL TO A ROCK LOBSTER
FISHERY
/ denotes sampliﬁg

Zone 1 Zone 2 Zone 3 Zone 4

8t v/ . v/ v/
8ty v / /
5t VN /

Each diagonal line in Figure 11 represents age v. time
for 8 cohorts (2 sexes in each of 4 zones). The label b of

each cohort is shown below this line e.g. 1SD (S=1,2 ;
D=1,2,3,4).



Females

/ _ \

| Males X (Years)—s E

| Mo . _ i

Vd : Ty

! |

. ] 4 I |

&y | T O —4 |

‘ o
O | =ty S
6L3 ’ l tB) |—
1SD 25D 35D 45D

Fig. 11. Diagram of age v. time for the cohorts in the zones of Table 5.
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Suppose male cohorts are full sized from 3% years
(=4 years -8t; /2) onwards but that male cohorts older than
6% years (=6 years+d8t; /2) are not sufficiently well .
represented in the catch to enter the equations for §, M
Let the corresponding ages for females be 4% years
(=5 years -6t, /2) and 8% years (=8 years+6t;/2)
respectively. These ages are shown in Figure 11.

Let £=m=n=1.
Thus there are 25 equations in the system

' Kbij = Lbij and 14 unknowns, namely

! . ! 1 n n . b} H "
G1o, Q113 Qog, G213 By, Bz, B3, Byj Myp, Myg, Myp; M2y, Mag, Mz

With this choice of sampling intervals all sine terms are zero,
thus og3, O3, My1, Mz; do not appear. (If each zone had been
sampled during 6&t;, &ts, 8t; there would be 40 equations and

14 unknowns.)
The least squares method reduceé to solving the following

equations. (Only the equations 3 | (ﬁbij"Lbij)z =0 ,
32g (bis)

5 =81, , B , M1y are shown. Note aS(O) = &S(l) )
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(log{algoé)}*a(;l1210-1(0)81+6T121m1(4) +8G1 122081 ( 5)81 +8T 1 22m,(4°5) - Lllls 12J

X [G,_:-(—O)-a:%g).‘-acllzlél +6G11zzéx]

f .
+[lo [GIEO;):|+5G112161(0)81+5T121m1(5) +5G11220f-1( 5)81+5T122m1(5 5) L211;12}

1 1
X [m)'m)+661‘1218; +‘5G11?281]

103[31E0?)}+6G1232a1( 5)81+6T232m1(4 5) +68G1 2358, (0)81+6T233m1 ) L’“ ’23J

" [&1%'5)_ &1“‘1_(6)+ 6G1232§1 +8G, 233%1]

+[108|:a150§)]+6(312320-1( 5)81+§T232m1(5 5) +‘5G12330-1(0)B1+6T233m1 (6) Lzu,za] )

11
&, (58,0

x

+GG123231 +5G12338 }

+ 10%[2120?)]+‘5G223205 (5)82+5T232m1(4 5)'*'6\-12233& (O)Bz"'(STzsth(s) Luz;za}

X [a—l_l(—.g)—ét‘}(—é)*‘é(}zzszéz +6G2233é2]'

+[lﬂg|:a1§0:;):|+5(322320l1( *5) Bz+5T232m1(5 5)+6G22330¢1(0) 82+5T233m1(6) L212323}

1

- &-1 ('5)_611(0)+5G2232E2 +6G2233éz] :

+[1og[§‘g?)5)]+60312161(0)’é3+6'r1zlﬁu(to +6Cs 12281 5)Bs +8T, it (45) —“Lm,l;]
1

1 1 ~ ~
% [m)_ a, (.5)+ 8Ga12:Bs + §G312283J

+[100[32 0 14 56s 1201 OB #5121 (94 665120604 (9)Ba #6722 6+3) Larnnns)

x [CL];(O) 0’-1% 5)+5G312183+6G3122.83]

+(8G4 13510 (0)@5"4'51“13 1fiy (4) +8Gu 13281 (+5) B +6Ty 55y (4+5) +8Gais 304 (0) B.
+38T, 5 4M, (5) "fq 14s13) X (5‘3&131%& + 6Ga132§u + 5Ga133én)
+(8Gu15181 (0 But 6T 1218 (59 +6Cu 12281 (+5) Bu+ 8T 132 (5°5) +6Gu1358: (0) By

+6T133ﬁ1(6) -izu”l:a) _(SG:.131§A+6G&1328L. +5GA133§¢4) =0 ,

x
L]
L
.
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f (0
[logm )>

J+(§G11210ﬂ1(0)81+6T121m1(4)+‘5G11220"1(5}81+5T122m1{4 *5) - L111:12J
X (5G11210-1(0)+6G11220'-1('5)) .

aa(0)
X (8Gy12101 (0)+8G1 228, (°5) )

1og[ 35 5):i+6G11210L1(0)81+5T121m1(5)+6G11220L1( 5) By +6T, 248, (5°5) L“l,u}

+8G, 12102 (0B, +8T12:M2(5) 486112202 (*5) By +6T,22M2(5°5) =Lazs, 12
x (5(;1121&.2(0)+‘SG1122&2('5))

+6G1121a2(0)§1 +6T1211{[\12(6)+6G1 122&2('5)81 +6T122m2(6 5) L321 312

(. axo
| Log| 353,
X (GG]_121&2(0)+6G1122a2('5))
+ log[gjog):l-i-ﬁ(h1210&2(0)814‘6'}?1211‘!‘12 (748G, 1 22082 (+ 5)81+5T122m2(7 5) - Lh2l;12
X (601121@,2(0)"“'6(;1122&2('5))
+11 [%%5+5G12326L1('5)31+6T232ﬁ\11(4'5) +5G1233ﬁ1(Q)81+5T233m1(5) Lisi,2s
X (6(;1232&1('5‘)"‘5(;1239&1(0))
+[l g[gio?) +6G1232&1('5)§1+6T232ﬁ\11(5'5)+6G123Sal(O)Bl+6T233m1(6) Lai1,23
X (8G12328:(-5) +8G1 2338, (0))
Fal .5‘ ~ A ~ ~
+[10g[g:§0)) +5G12320-2('5)81_+6T232m2(5'5)+5G1233€15(0)B +8T233Mm2(6) -Laz1,23
X (6G1232&2(-5) +(SG1.23362(0))

5.4+5) .
+[10g[g o) .
2 .
X (8G129282 (*5) +8G1 22585 (0))

j|+5G1 23202 (*5)B1 +8T 23205 (6+5) 861233802 (0B +8T253M2(7)~Ls21,2s

}"'691232{12(5)81+5T232ﬁ2(7'5)+5G1233&2(O)BJ+GT233m2(8) Lizi,23
X {8G123202(5)+8G122582(0) = 0 .

: G2*5)
: {5t



el

+[10
+| log

+| log

rl [& 1.('5)

(0
1(*5

\Of-l(o)
§[8.(5) 5]

[64(+5)]
18.(0) |

'& 1(‘5)-
164(0) |

8|&,(0)

K0)

a 1(0)
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)j|+6G1121(11(0)B1+5T121m1(4) +5G1122& ( 5)81 +5T122m1 (4+5) - L1 11, 12)

X (8Tya4 '(Slez)

+8G112.8, (0)BL+8T, 2.5, (5) +6G1 1 2201 (’5)31#61‘1221’!\11 (5+5) -T211,s 2]

X (6T121 - GlezJ

+5G1 2-326.1 ('5)§1 +5T2321?11 (4'5)'*'6_(;1‘2335.1 (0)/8\1 +5T233{T\11 (5)“i1 11, zaJ

X (=8Ta32+8T253)

+6G12328, ('5)31 +5T232{ﬁl1 (5°5) +8G, 2330, (0)8\1 +8T235m, (6) "izx 1,23

X (= 8T232+8T235)

+6G223231(5)82+5T232m1 (4° 5)+5G2233011(O)Bz+5T233m1(5) L112 23’

X {(=6Tza2 +5T233)

. Ba(-5
+ 10g[a150)):|+6(§22320.1 “5)82+6T232m1 (5*5) +8G 223301 (0)824‘(5'1'2331‘[11 (6} - Lz 12, 23}

X (=8T232+6T233)

+ log[ 5 )]+<SG3121621(0)§3+6Tmfﬁl(4)+6Gama1(-5)§3+6T122fﬁl(4-5)-1“3,uj

x (5T121 -G8Ty23)

+ log[a 5 )]+ac3,2151 (OB +68T 12181 (5) +6Ga 12281 (-5) B +6T1 220 (5°5) - im,u]

X (GT‘x-za - 0Ty 22)

+(5G<.131&1 (0)@;,+6T131fﬁ1(4') +‘5Ga132a1 ('5)34.'*'6'1'1321?11 (4'5)+6Ga1.33a1 (O)Bb

+6T133ﬁ\11(5)_i11h313) X (8T131 =6T132+ 8T 153)

+(§Gh 131@-1 (0)é&+dT13 1ﬁ11 (5) +(57G1- 132&1 ('5)éh +6'T132ﬁ11 (5'5) +(SG:. 1 33&1 (O)éu

+5T133a1(6)—£21n,13) * (6T131 -6T£32 +5T133) =0
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APPENDIX 1. ON NOTATION
Flow chart symbols are shown in Figuré 12.

An ordered set, or vector, (Y;), where % takes discréte values,
is written as y, .

An ordered.array, or matrix, (Yj), where % and M take discrete
values, is written as y,, . The vectors (¥g.) , (Y.y) , where

Yoo F é Yom » Yep g Yo » aTe written as y,., , Y., respectively.

The vectors (ylm') , (yl m) , where %4, , m are particﬁlaf values
1 1

of £ , M, are written as Yem, Y@ . respectively. y. = ) Yom
1 1

) The above conventions are easily extended to any ordered array
with any number of subscripts.

The determinant of square matrix y,, is written vy, Il . The
cofactor of y, ~in |y, Il is written Hy**Hgﬂl , and is defined as
the determinant resulting when y2 is replaced by 1 and the remainder
of row £ and column m is replaced by zeros.

Table 6 lists symbols W1th constant meaning throughout the text,
and shows the section wherein each of these symbols is defined. Other
symbols are defined and redefined as required.

_ The fblloﬁing statistical operators are used:
BS , bias (expected value minus some defiﬁéd value)
72 » mean square error (second moment about a defined point)
p , correlation coefficient
cv , coefficient of variation (standard deV1at10n,fexpected value}
- The condition is placed after the_argument; e.g. E{c|A) means the
expected value of C given the set A . If the argument is enclosed
by ( | ,-then [R is implied, where R is defined in Section I1;
e.g. CV(N| means CV(N|R)

An exponent written after a closing bracket is applied before
any operator written before the opening bracket e.g. E(ﬁ’) means

E((82)%) .

With the exception of the operators o and T° , an exponent
i 1
written after an operator is applied after the operation e.g. Eé{N|
1
means {E(N|}*



A, —> —>e
d. | e.
QUESTION

As

Y A

A;

Fig. 12. Flow chart symbols. (a) Perform A, after
after A;. (b) Different entry points. (c¢) Perform
before proceeding to 1. (d) Exit at y if answer is

answer is no. (e) Perform both A, and A,

A,. Perform A,
both A, and A,
ves, at n if
after A,.



'TABLE 6

SYMBOLS WITH ~CONSTAN‘T MEANING THROUGHOUT TEXT

Symbol defined | Symbol- . defined | Symbol  defined
. in . in o “in
Section _ ' _ Section | Section
ay 11 mg(X),mg mg me  XIII' | ¢ V(i) .
a, V. No,N | I | ooy VIIG)
. . ' ) - ) 7
2. () V(b)(-)‘ N',N v A W
b : v Nog VI | ug Vb) (i)
B, . V(c) Pr,P 11 N v
B,,B1,By,B;,B] VII(iii) Pas(5) (@ sPyg V) () | uy V{c)
BS Appendix I q(h,x,t),qi,q 11 v V{c)
c Y q',9",4,4',4" . v viout o VII(GET)
Cup v Q',Q" - IV(Fig. 1) £,6',£" 1V
g iChg VO | quy,4,, XI § X
cy V(c) R g II £V E"  VIII(b)
Cv Appendix 1] S(t) . i1 D . Appendix I
dt,dg,dp, I1 s,s',s" | vV T Appendix I
.D,D(b) XI S,Sg v baq V{b) (1)
F IT t,to . IT | X V(b) (i)
g' _ 11 t',t" W Vaq V(b) (i)
h,h, (x) II to (s Vb)) | o~ V(<)
E{a - v : t(i) XI '
K, VII(Hi) | X, X, ,x. ' II
L} v Xg % (4) v
o(K,,BLLBYY  VII(iii) |z : II
Yigolpigotpeg XL 2402 A
Mh,x, €)My M 11 00 08 Og (1) XIII
M v B,(5).8; V(b) (i)
Mys sM 5 XI By _ X111~
r - Vv
Vo | V) (i)
‘6g,8gt,og", 6", 8, IV
&t ' IV,XI
8 byage Taquee 88y XI |
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APPENDIX II. RATIO OF VARIATES

Let v., vz be variates and write BS(VZ/VI)-E(Vzlvi)-E(Vz)/E(vl)s

|CV(V1)] ICV(V2)| " Then

IBS(Vz/V1)|/U(V2/V1) < ‘CV(Vl)I

(2) BS(Vzlv;) = iEVZ)[CVZ(V1)- p(V;,V;)CV(V;)CV(v2)+'O(€ )}

E(“z/V;-E(Vz)/E(vl)]Z =

2
EZE::)[CV (vi)+ CVE(v2)=-2p (V1,va)CV(v1)CV(va)+ 0(5 H]

(h) CV2 (Vzlvl) = CV2 (V1)+ CVZ (Vg)-QQ(VL,Vz)CV(VL)CV(VZ)"' 0(-63)

Proog: —
(1), (2), (3) constitute Exercise 107 of Raj (1968).

(4) follows from (2) and (3).
Q.E.D.

APPENDIX III. UPPER BOUND TO VARIANCE OF ELEMENT OF
, INVERSE MATRIX
Let v,, be a non-singular nxn matrix of variates. Then
olvidy;) < BN 5. - (B vaaDish

n e |l TEGLO N TE@LIL TEML)
s 4 e A 5 ()

s : ]
2’3“‘:]— HE(V**) H HE(V**)H
where € = 0,1 ifa =8, a #8

Proof: —
(v;:)ij = Hv**Hji /v, || and is a function of (Vii,...,Vpn) .
ow 2 lvaall = lHvaallyy, - S0 |
Eﬁ,“v H“=I|Hv**Hﬁth, 0 if 2#j and m#i, 2=j or m=i . Hence
_ﬁ (V*i)i' - _A; g%”v**||ji - ”V**||ji gi“vi*ll
vy 3 v, Il eVem [ved2 Vom
corcm vl vl vy
= - t
[jvesl] [1veslP F

corollary of Appendix IV, the result follows.

>

Q.E.D.



. The following program, subroutine SIGIN, calculates the upper
bound for n 2 3 . Input is n, E{v,,) and o(v,,), ' denoted in
the subroutine by N, X, S respectively, and ‘the matrix .of upper.
bounds of the U[(V;L)ij] , denoted by T, is'returned._ SIGIN
calculates term £, m of T(i,j) ’

elIRy Ry 0L G Il IRy G IR Gyl o
HE (v, )] | E (v, )12 "

as

where € =0 if £=3 or m=1,
1t if (£>j and m>1) or (£ <j and m<i),

—1 otherwise

and ||R B 5oeee 5 Gy 5 Cpy e || means the determinant
resultlng when rows o ,B, ..., and columns ‘A, B,... are

eliminated from ||E(v,_ )|

(Language: CONTROL DATA 6600 Extended FORTRAN)

SUBROUTINESIGIN(N,X,S,T)

DIMENS [ONX (94, B4), AX (94 P4) , s(ﬁa.ﬂa),T(ﬂa,ma),v1(g3,m3),vz(mé,ﬂ3),

1Y3(@2,02)
N1=N-1$N2=N-2
DO41=1,N$D04J=1,N

4 AX(1, J) =X{1, J)SCALLXCDETRX(N N,AX,DAX)$D011=1,N$D01s=1,N
DO21GA=1,N1l $D0O21DE=1,N1 $MU= IGA$IF(IGA GE . J)MU 1GA+]1
NU= IDE$IF(IDE GE. I}NU=IDE+1
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2 Y2{1GA, IDE)=X(MU,NU) SCALLXCDETRX (N-1,N-1,Y2,DY2)$T(I, J)=ﬂ$DOlL=1,N

DO1M= l,NSEPSn—lle(L EQ.J.OR.M.EN. I)EPS 0
IF({L-J)*(M-1).GT.@ )EPS=13D031GA=1,N1 $DO3IDE=1,N1 SMU | GA
IF(1GA.GE.L)MU=]GA+13$NU=IDESIF (IDE.GE.M}NU=IDE+1 .

3 YL(IGA, IDE)=X(MU,NU) SCALLXCDETRX (N-1,N-1,Y1,DY1)$R1I=AMING(J,L}
C1=AMING (1 M) $R2=AMAXP{J,L)$C2= AMAXG(I M)$DOSIGA 1,N2 .

DO5SIDE=1,N2 $MU= EGA+1$EF(IGA LT.R1)MU= IGASIF(IGA GE R2-1}MU= IGA+2

NU«IDE+1$1F(!DE LT.C1INU=IDESIF(IDE.GE.C2-1)}NU=1DE+2

5 Y3{IGA, IDE)=X{MU,NU)SIF(N2.NE. l)CALLXCDETRX(N 2,N-2,Y3,DY3)
IF{N2.EQ. l)DY3 Y3(l 1)

LT, d)=T(1,d)+ABS (S (L, M) (EPS*DYB/DAX DYZ*DYl/(DAX)*“Z)) :
END :
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APPENDIX IV. UPPER BOUND TO MEAN SQUARE ERROR OF A .FUNCTION
OF VARTIATES

Let z(v,} be a function of thé variates Vi,va,... and let r*'be
any real vector. Let 6v, = v, -1, , 6z = z(v,) -z(r;) .
84Z = Z(T1,eeesTim1sVisTitssTid2,.--) - 2(¥y) , T2 (Vi) = B(Svi)? ,
t2(z) = E(62)% , f%(z) = E(Giz)? . Then, if z(v,) can be expanded as

a Taylor series about r_ ,

1(z) <} 14(2) + 0[Lt4(2)]% = ]

9
mfi{r*) T(vy) *+ O[ET(vy)]?

Proog: — _
8z = [2(v,) - 2(ry,v2,va,...) ] +[z(r1,v2,vs,...) = 2(T1,12,Va,.. )]
+ [z(r19r29v3!"') - Z(rl'sr2:r3sv.hs"")] t...0+ [...'Z(I'*)I

2
=) 642 + O(ZIGVil] . On squaring, taking expected values and

applying Appendix V, the first relation is proved.

842 = %%ir*)6vi + O(Svi)2 . On squaring and taking expected
expected values, the second relation is proved. ’
- Q.E.D.
Conollany: —
1 2
o(ziv,1) < E¥z(v,) - z(Ev,1)}
9z(ECv, J) - 2
< z 531 * a(vy) + OlZo(vy)]
Proof: — Substitute E(v,) for r, and note o(z) < T1(2z)

Q.E.D.
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APPENDIX V. LOWER BOUND TO PRODUCT OF MEAN'SQUARE:ERRQRS
- OF TWO VARTATES

Let Tz(vl] = E(vl--rx)2 Y xé(vg) = E(vy - r2)? where v, , v, are
variates and r, , T, are any two real numbers..Then
TW)T(va) 2 [E(vi - i) (v - 12)]

Proog: — -

[E(vs - 1) (va - r2) |
= |E(viva) - E(Vi)ts - .1:E(vy) + r,ra]
= |E(v1v2) < E{vi)E(va) + E{vi)E{vz2) -‘E(vl)rg - T,E(vz) + 1.1,|
= |cov(vy,vs) + BS(V;)BS(V:)| (where BS(v,) = E(vy) - 11,

BS(vz) = E(va) - r2 )

= |p(vi,va)o(vi)o(va) + BS(v:)BS(va)|
s o(vi)o(va) + [BS(vy)| |BS(va)|

Now use the Cauchy - Schwarz inequality, namely: .
For real numbers, (kif: +kofz+... +kplp¥ < (k¥+ ... +k2)(0d + ... +23)
- (0(vi)o(va) + [BS(vi)| [BS(v2}[)? < (0%(vi) + BS?(v1)) (0% (v2) + BS? (v2))

Tz(VL)Tz (Vz) Ce

A

Q.E.D.

APPENDIX VI. METHOD FOR NUMERICAL EVAtUATIONlOF-

1 = f f(vgel)z(vy)dv, WHERE J f(vge)dvye = 1,

OR | =} f(v*)z(v*j WHERE | f(vy,) = 1

v, . v,

Using a computer, select n values of V, according to the

probability law f(v,) . Let v,; be the value selected on the ith

occasion. Let

Hi

1 ."2 _ 1
H-E *i],S-Z':H_

'T]'M.’J

(z(Veq) - ZY . Then
1 .

E(z) s E(s%/rn =0?(Z) . So continue the procéss till

(s /n) /2 is sufficiently small.
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22

13.

19
2¢

APPENDIX VII. PROGRAM FOR INVESTIGATING ESTIMATOR 1z
DEFINED IN SECTION VI

The symbols in the following program are defined in Table 7.
(Language: CONTROL DATA 6600 Extended FORTRAN)

PROGRAM WS {INPUT,TAPEL1=INPUT,0UTPUT)

DIMENS IONAN (58) ,C1(50),52(58)

DIMENS |ONCON (18@) , IND(50)
TN=TC i =K=§

K=K+1

READ (1, 2)AN(K),CI{K)
IF(EOF (1) .NE.P)GOTO22
FORMAT (2F4.9)

TN=TN+AN (K)

TCI TCI+CI(K)
$2(K)=C1{K)*(1-C! (K)/AN(K))/
GOTOL

K=K-1

S2W=52B=@

AK=K

CBAR=TC | /AK

D03J=1,K

$2B= SZB+(CI(J) CBAR)**Z
$S2W=52W+52(J)

AK1=K-1

$2B=52B8/AK1

S2W=52W/AK

tvs2J=p

DO4J=1,K

CV52J=CVS2J+(52 (J)—szw) A2
CVS2J=SQRT (CVS2J/AK) /S2W
PRINT5,CVS2J '
FORMAT (1H1, %CVS2J=x%,E11.4)
N=TN

PRINT13,K,N

FORMAT(lX *K=%,13,5X

AN (K)-1)

1 #xN=%, 15/2X, *LK#, 5X, *FK# ,5X , «FN* , 7X, #BS=%, 7X, «ss+)

READ(1,2@)LK,NFN
FORMAT(2I3)

IF(EOF (1) .NE.$)60T021
FK=LK/AK

E=p

DO711=1,10¢
TCiD=TND=§

D0144=1,K



14

15

18

16

17

ip

11

21

IND(J) =@ - :
DO812=1, LK :
J={K-1.E-6) xRANF (DUM)+1
FF{IND(J) .EQ.1)GOTO15
IND{J)=1 .
TCID=TCIDHCI (J)
TND=TND+AN {J)
E=E+TCID/TND
B=TNxE/100.-TC!

D06 1=1,NFN -

READ18, FN

FORMAT (F5.2)

El=E2=p

D0911=1,19¢
TNS2J=TCID=TND=0
D0l6J=1,K

IND(J)=p

D01P12=1, LK .
J=(K-1.E-6)*RANF (DUM)+1
IF{IND(J) .EQ.1}GOTOL7

AND{J)=1

TCID=TCID+CI {J)

TND=TND+AN (J)

TNS2J=TNS2J+AN(J) %52 (J)

CON(11)=TCID/TND

E1=E1+CON(!1)

E2=E2+TNS2J/TND#%2

E1=E1/100.

V=0

DO1111=1,10¢

V=V+{CON(11)-E1)%x2

S1G6=SQRT (TNx#24V/99. +TN##2%(FK/FN-1)*E2/109.)
BS=B/SIG

S1GS=SQRT (K#S2B* (1/FK-1)+TN%S2W« (1/FN-1/FK))
$S=S1GS/SIG

PRINTL2, LK, FK, FN,BS,SS

FORMAT (1X, 13,2F7.4,2F9.4)

GOTO19

CONTINUE

END
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TABLE 7
DEFINITION OF SYMBOLS USED IN PROGRAM OF APPENDIX VII

Symbol Definition ’ Symbol Definition
AN C,.(0) FK £l
CI(J) ACiE-,SbB(J) FN £
s2(J) 83 | BS  BS(gyls)/o(zyls)
NN C.. sS o(zils) / o(zy]s)
€I ¢y TCID * Cir.,s, 3
K,AK K ™ C..

2
S2B . Sy B BS(z4ls)

2
S2W Sy SIG  o(tyls)
LK k SIGS  o(zils)

K 3

cvszJ  [1 2 ez 32 2

{Kle(sJ-s(w)) } /Sy
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APPENDIX VIII. UPPER BOUND TO MEAN SQUARE ERROR
OF SUM OF TWO VARIATES

Let T2(vy) = E(vy -r1)? , T2(v2) = E(vg -1r2)® ,
T2(vy +va) = E(vy +va - [r, +72])? where v, , v, are variates and r, , r,

are any two Teal numbers. Then T{vy +vy) € 1w} +1{v2)

| Proogs — tP(vi+va) = E([vi-ri]+ [vs-r2])?
< T2(vy) +18(va) + 2|E(vy - 11) (V2 - o) |
<

T2(vy) + 12 (vy) +27(v1)T(v2) by Appendix V.
| | Q.E.D.
APPENDIX IX. CONFIDENCE -INTERVALS USING_ MEAN SQUARE "ERROR

Let Tz(v) = E(v-1)? where v is a variate and T is anv real number,
1
and let n > 0 . Then Pr{|v-r|<m® +1}*t(v)} > pri{|v-E(W) <no v}

Proof: — t?(v) = o?(v) +BS?(v) where BS(v) Z E(v) -1 .
Also E(v) -no(v) =r -(no(v) - BS(v)) and A
E(v)+no(v) = r+ng(v)+BS(v) .. wa uée the Cauchy - Schwarz

inequality (Appendix V): Let k; = n , £, = o(v) , ks = #1 , %, = BS(v)
by .
Then |no(v) +BS(v)| < (n? +1)21(v)

Q.E.D.



