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Climate change is a ‘hot topic’

Some of the stimuli include
= Hollywood: The Day After Tomorrow

= Al Gore movie

= Intergovernmental Panel on Climate Change 4% Assessment

= Stern report on economics of climate change

= The political cycle

= Australia’s long running big (hot) dry period

The two big issues on the minds of many people are
GHG emissions and temperature rise (and its
consequences)



‘llml' Temperature rise — e.g. as foreshadowed by IPCC
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Atmospheric CO, over the last 2000 years
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Importance of CO, in forcing’ of climate
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Given the importance of CO,, where is all the

world’s carbon? (1 GtC = one thousand million tonnes)
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Global carbon reservoirs
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It makes some sense to learn that the oceans take

up a significant amount of anthropogenic CO,

In our region, the Southern Ocean absorbs ~ 40% of
total oceanic uptake of anthropogenic CO,

Anthropogenic CO; Column Inventory (mol m-2)

EQF 1 EQ



Anthropogenic CO, is carried into the ocean interior by water masses

formed in the Southern Ocean, so any changes in this circulation will
affect future uptake
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We have seen rapid changes in the deep SO

46.07

4608 . Temperature Change

In 10 years, the deep layers of
the entire basin have become
fresher and less dense.
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1. Implications for ‘forcing’ of climate change
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Most of the world’s carbon is in the ocean
= Human activities now emit about 7.2 Gt of carbon per year

= About 2.2 Gt of this anthropogenically generated carbon is
taken up by the ocean, thereby reducing the amount that
builds up in the atmosphere

= Any reduction in net ocean uptake caused by shifts in
ocean circulation (or the ‘biological pump’) could lead to an
acceleration in the rate of atmospheric CO, increase and
global warming

= Ergo, improving our knowledge of physical, chemical and
biological oceanographic processes is a high priority, among
others. ...



Carbon in the ocean is also chemically important

Ocean carbonate chemistry — carbonate ions are
needed to enable skeleton/shell-forming creatures to
form their calcium carbonate structures

« Ca? + C0,> — CaCoO,

e.g. coccolithophore exoskeletons, pteropod shells, coral reef structures . . .




Does adding to the oceans 2.2 GtC of anthropogenic

()

carbon in the form of CO, assist shell formation?
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No: the opposite is the case.

' idifi Acidity i ted b
Adding CO, to the atmosphere acidifies hyc('j‘:gé:nrgf]fse” ed by
the ocean because CO, is a weak acid
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form their calcium carbonate shells

« Ca? + C0,> — CaCoO,



‘Aragonite’ is a major form of calcium
carbonate in question: the future of
Aragonite ‘saturation’ is the issue, as
aragonite dissolves in under-saturated
conditions
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2. Implications of ocean acidification
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Summary

= Rising CO, levels in the atmosphere reduce the ocean’s [CO,%],
decrease the ability of biological organisms to calcify and
decrease the stability of calcium carbonate

= At present, calcium carbonate (both aragonite and calcite) is
stable in the surface ocean

= By 2100, with the 1S92a CO, emissions scenario, aragonite
becomes unstable in the entire Southern Ocean south of 60°S
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3. Implication: the oceans have absorbed vast amounts of added heat
(>80% since 1950s), but the ocean response will continue to lag
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Sea Surface
Temp (SST),
ocean currents,
rainfall trends
and marine
impacts are
inter-related:
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Importance of ocean warming: to weather & rain
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El Nino Southern Oscillation (ENSO) is well known via its
signature in SSTs — quite a modelling challenge!
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But impact of El Nino varies — challenge for scientists is to

()

determine how it will change as global warming continues
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Rainfall Totals for 6 Maonths as Percentiles{MOL) : Time - Dec02
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Importance of ocean warming: to weather & rain
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Correlation patterns between SST (sea surface temperature) in June
and pasture growth days in the subsequent Jul-March period in NE QId
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What will happen to rainfall as land and ocean warm?

()
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[IPCC AR4 climate model consistency plot for 2100 ]

June-July-August (JJA)

- Precipitation increase in 290% of simulations Precipitation decrease in 275% of simulations

Precipitation increase in 275% of simulations ' Precipitation decrease in 290% of simulations
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4. Implications for weather patterns and rainfall

While climate models still face challenges in
simulating the detail of observed SST patterns and
their regional responses to global warming, at global
scale the modelled trends are consistent with
observations.

For example the southward shift in mid-latitude storm
tracks and the instabilities that generate rainfall over
southern Australia are consistent with a majority of
climate model simulations.

A move to more ‘El Nino-like’ conditions in the future
would pose a significant challenge to Australia.



Importance of ocean warming: biological effects
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e.g. Tasman Sea warming/poleward increase in SST affects species range

Maria island
long-term
ocean
temperature
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show
warming in
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Importance of ocean warming: biological effects

e.g. Tasman Sea warming/poleward increase in SST affects species range

Invasion of sea urchins native to NSW coast causing barrens (loss
of kelp) off eastern Tasmania (S. Ling)

Changing composition of phytoplankton blooms off
Tasmania— increased tropical species (S. Blackburn)

Rock lobster catch and distribution correlated with
regional SST changes around Tasman Sea (Harris et
al 1986)

Wl changes: either newly established south of Bass strait, or show
¢\ significant range extensions. (P. Last)

Hill, 2005
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5. Implications for biological systems

Changes in
habitat range
due to
changed
physical and
chemical
environment
as ocean
currents vary
in response to
altered ocean
heat content
and warming

(BLUEIlink simulation)
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Sea level rise (m)

Importance of ocean warming: sea level rise

1.0

0.8~

©
»
T I T T T

o
~
T I T T

0.0 l | | | | | |

5990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year

The science challenge is to
substantially reduce the uncertainties
In projections — FAR controversy

IPCC TAR Global Sea-level rise projections (2001)

Stabilisation Costs

Tens to hundreds of billions of
dollars

People to respond to
coastal flooding

-Tens to hundreds of
millions potentially affected
(effective adaptation
reduces this dramatically)

Impacts on ecosystems —
biodiversity

We are already committed
to longer-term changes due
to climate system lags

Church et al., IPCC TAR, 2001




Coastal effects are of concern; Herald Tribune Jan 2007
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The future must float |
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IPCC 4t Assessment (2007): Measurement uncertainty in

observed sea level rise has been reduced
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IPCC 4t Assessment (2007)

Table SPM-1. Observed rate of sea level r1se and estimated contributions from different sources. {5.5, Table 5.3}

Rate of sea level rise (mm per year)

Source of sea level rise 1961 - 2003 1993 - 2003
L ———— T —
Thermal expansion 0421012 16105
Glaciers and ice caps 050x0.18 0.7710.22
Greenland ice sheet 0054012 0.21+0.07
Antarctic ice sheet 0.14 +0.41 0.21+0.35
Sum .of mdnndual climate | 11405 28407
contributions to sea level rise
Observed total sea level rise 18405 3.1+0.7°
Difference
(Observed minus sum of estimated climate 0707 03x1.0
contributions)

Table note:

? Data prior to 1993 are from tide gauges and after 1993 are from satellite altimetry.
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6. Implications: sea level rise

Thermal expansion of the ocean has contributed the
major component of observed seal level rise to date

As the Ocean continues to warm expansion will
continue

Due to the ‘thermal lag’ inherent in ocean warming,
this expansion will continue, slowly, for a very long
time after GHGs are stabilised

Adverse coastal implications of SL rise may be added
to by changes in the intensity of weather systems
(storms): i.e. any tendency to increases in storm surge
inensity plus will reinforce effects of sea level rise
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Average flooding by top 5% of storm surges from 1000 simulations



Enhanced Greenhouse Climate - 2050
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Synthesis (1)
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We have considered six ways in which the ocean plays a
role in the climate system (we could have done more!)

Two concerned the carbon cycle:

= Ocean uptake of anthropogenic CO,, which moderates build-up of
CO, in the atmosphere

= CO, acidification of the surface oceans has potential in the long-
term for some organisms to be unable to calcify and produce
skeleton/shell (aragonite under-saturation)



Synthesis (2)

CSIRO

We have considered six ways in which the ocean plays a role in
the climate system

Four concerned ocean warming:

= The huge heat capacity of the ocean results in ocean warming lagging warming
of the atmosphere and land masses — ocean warming and thus some degree of
global warming will continue for many decades after stabilisation of GHG levels

= Ocean circulation and weather patterns are affected by changes in SSTs -
El Nino provides one example of this, and the challenge we have is to
understand future shifts in such phenomena

= Changes in marine ecosystems with changes SSTs and ocean circulation are
already apparent, and can be expected to accelerate

= Sea level rise has been observed, at the upper end of the expected range



Others are more
succinct . . .
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In some quarters the challenge posed by climate change has
been cast largely as an ‘atmospheric’ phenomenon - rising
GHGs; resultant atmospheric temperature and precipitation
changes

| hope that you will agree with me that the climate change
challenge is just as much an ‘oceanic’ phenomenon, indeed a
different speaker might have made compelling statements
about the response of terrestrial physical, chemical and
biological systems to greenhouse forcing

We are moving well beyond ‘climate models’ = ‘meteorological
models’, to Earth System Simulation, where the Earth’s
physics, chemistry and biology are all coupled

When you see that term in the future — you will now know why
it has arisen
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