C-squares - a new method for representing, querying,
displaying and exchanging dataset spatial extents.
Conventionally, spatial dataset extents are represented in metadata catalogues (data directories) by bounding northern-, southern-, western-northern-, southern-, westerndata (FGDC, 1994). Spatial data (FGDC, 1994). Spatial searching of such catalogues can then be supported by allowing the entry of a " search rectangle" which can be used to test for overlaps with equivalent "data rectangles" using simple arithmetic ("greater than / less than" tests) to discover datasets from the region of interest.
While the "overlapping rectangles" test is sufficient to eliminate many datasets whose bounding rectangles do not overlap the search region, it fails to discriminate between true "hits" (those whose bounding rectangle AND actual data extent overlaps the desired search region), and "false hits" (those whose bounding rectangle indicates a match but where, on closer inspection, there is in fact no data from the desired region) This is because, in all cases except where the dataset actually is rectangular in shape, small - or possibly large portions of the "data rectangle" will be empty. This is easily illustrated with the following examples in theory (a) and in

Tony Rees, CSIRO M arine Research, Australia practice (b):

The " C -squares" system addresses this problem by allowing a system or a user to represent any shape or size of dataset spatial extent using a set of numbered squares at any chosen resolution in
dearees of latitude and lonoitude, e. . 1×10 degrees of latitude and longitude, e.g. $1 \times 1^{\circ}$
(around $100 \times 70 \mathrm{~km}$ in temperate latitudes), $0.5 \times$ (around $100 \times 70 \mathrm{~km}$ in temperate latitudes), $0.5 \times$ $0.5^{\circ}(50 \times 35 \mathrm{~km}), 0.1 \times 0.1^{\circ}(10 \times 7 \mathrm{~km})$, or as fine a resolution as may be required. Each square has a pre-defined code based on a recursive subdivion
of WMO (W orld M eteorological O rganisation) 10-degree square numbers, e.g. 3013:497 ($1 \times 1^{\text {® }}$
square) or 3013:497:1 ($0.5 \times 0.5{ }^{-}$square) such that a string of such codes can be written e.g.
3013:497| 3111:468| 3111:478| 3111:479| 3111:488| 3111:489| 3111:499| 3112:122| 3112:123| 3112:131 3112:132| 3112:134 (etc.)

This string can be used as a basis for spatial queries if the query itself is translated to one or more c-squares: for example searching for a c-square 3013:497 will produce a match with the above
string, searching for 3013:496 (or 3012) will not. It can also be sent, via the web, to a custom C-squares mapper to produce maps similar to those displayed here, plus used as a portable (data-independent) metadata element representing the dataset spatial extent.

The c-square codes themselves are hierarchical, thus 3013 (10° square) contains 3013:4 (5º square) which contains $3013: 497$ (1° square) which contains 3013:497:1 (0.50 square), and so on.

The "c-squares" system is

 particularly useful for representation of oceanographic sample only portions of the sample only portions of theavailable ocean surface available ocean surface However, is equally applicable to terrestrial data - especially for data which has an irregular
outline (such as most countries outline (such as most countries, states or other administrative areas, or natural features),
and/or where coverage is patchy or incomplete within the designated boundary.

AUTHO R'S AGENCY DATA (TYPICAL):

"C-squares" APPROACH:

HIGHLIGHTED SQUARES:

... can be expressed as a set of codes (labels) in an ASCII string, e.g.:
codel | code2 | code5 | code7 | code13 | code14 | code15 | code21 | (etc.)

- List of codes is potentially more succinct (concise) than original data .. - codes potentially terse in themselves - multiple points in single square only coded once - empty cells not coded

Now has capability for increased precision of querying (on individual square, not bounding rectangle)

WMO 10x10 DEGREE SQUARES IN PRACTICE (EXAMPLES)

Washington, DC is in square 7307 (NW global quadrant)
Hobart, Tasmania is in square 3414 (SE global quadrant)

BASIS FOR RECURSIVE SUBDIVISION
(e.g. in NW global quadrant)
(Principle as used in Australian "Blue Pages" metadata system, 1996)
10×10 deg. square - e.g. 7307

- divided as follows ("Blue Pages" nomenclature): 7307:4 (5 x 5 deg. square) - 7307:487 (1×1 deg. square)
- C-squares then extends this principle recursively, e.g. ..
- 7307:487:3 (0.5 x 0.5 deg. square)

7307:487:393 (0.1×0.1 deg. square)

- etc.

C-squares AS EXPLICIT SPATIAL EXTENT CODE/S
C-squares can also be quoted explicitly in metadata records, or any other web document referring to a point or region:

(NB , arrangement is mirror image across 0^{ϱ} latitude and 0ϱ longitude:
100 is always closest to the global origin, 499 is furthest away)
$(=" 1 "+" 00 ")$

