

Fourth International Science Symposium on Bio-logging Wrest Point Hotel and Conference Centre Hobart, Tasmania, Australia 14-18 March 2011

From individuals to populations: movements, foraging, fitness and the comparative method

Sascha K. Hooker

University of St Andrews Université de La Rochelle (2010-2011)

1. Measuring behaviour

Bio-logging

ADVANCES

LIMITATIONS

Resolution Sensor type Many parallel sensors Miniaturisation Capture / deployment Attachment Recovery/ transmission Expense Battery life Memory

Often.... Small sample sizes – problems with *representativeness* and *bias*

From McConnell et al. chapter 2010. MM Handbook of Techniques

Bruce Mate

© Sanna Kuningas

Manipulative experiments

S.K. Hooker

Hooker and Innes. 1995. NZ Journal of Ecology

Manipulative experiments

S.K. Hooker

Mensurative experiments

'Measurements taken at points in space or time – not involving imposition by the experimenter of some external factor'

Hurlbert, 1984

Northern bottlenose whales

Representativeness

2. Measurement of foraging

- How can we maximise broad-scale inference

Environmental Context

S.K. Hooker

TRAIN STATION

TDR: the biologging workhorse

Time-depth recorder (TDR) - samples depth at set time-intervals

Bird Island, South Georgia, 1979 - mechanical TDR

TDR: the biologging workhorse

Bird Island, South Georgia, 2002 – seals get wise!

S.K. Hooker

<section-header>

What are the proxies for foraging? -all dives? -all time below 10m depth?

Where in a dive does foraging take place?

Hooker et al. 2002. Marine Mammal Science

Foraging

Foraging signatures

- 1. Camera results show prey availability
- 2. Accelerometers / Hall sensors show prey capture attempts
- 3. Stomach temperature sensors show prey ingestion

Camera

Another foraging seal 10 m away

Camera

Krill illuminated by flash at night

Depth 39 m

Camera

Identifying foraging proxies

Identifying foraging proxies

Fedak et al. 2001. Mar. Mamm. Sci. 17:94-110

Marine Protected Areas

"Reserves...can help to overcome a key weakness of conventional management: its failure to account for ecological complexity" Roberts (1997)

Identification of foraging

- Most threats occur during foraging
- Most can be mitigated by spatial protection

Hooker & Gerber 2004. BioScience

Conservation Decision Making

Generation of maps based on foraging success Relationships between these and habitat features -provides predictive power to anticipate temporal changes

Daily estimates of change in drift rate for 79 elephant seals. From Robinson et al. 2010. J. Anim. Ecol.

Dynamic MPAs

3. Individual fitness

- Are there successful individual strategies?

'Three-dimensional' movements

2000-2001 64 trips recorded from 47 individuals

'Three-dimensional' movements

S.K. Hooker

Telemetry data

"Wildlife telemetry data are spatio-temporally autocorrelated, often unbalanced, presence-only observations of behaviourally complex animals, responding to a multitude of cross-correlated environmental variables."

Aarts et al. 2008. Ecography

Individual strategies

Marine Protected Areas

Critical habitat: *that which when changed affects rate of population increase* (Harwood, 2001)

Demographic assessment in MPA planning

- Which animals?
- What risk?
- What affect on rate of population increase?

Hooker et al. In press. ESR

4. Beyond populations

- The comparative approach

Image from Berta et al. 2005 Marine Mammals: evolutionary biology

The puzzle of ascent exhalations in fur seals

S.K. Hooker

- 29 individuals: every dive (over 12,000 dives)
- Range of dive depths (10 160 m)
- Diving on inhalation and exhaling expanding air on ascent
 - maintains constant minimal lung volume
 - preventing reduction in lung partial pressure
 - minimises reduction in blood O2 (minimises shallow-water blackout)

Other pinnipeds

Phocids – exhalation divers

No Harbour seals, Grey seals (Bowen et al.) 🚏

- No Weddell seals (Davis et al)
- No Northern elephant seals (Costa; Tyack) 🆓 🕻

Otariids – inhalation divers

No Australian sea lion (Goldsworthy)

- No Hooker's sea lions (Gales) 🐩
- No Steller sea lions (Davis, Andrews) 🐩

Yes Northern fur seals (Insley; Andrews) *
Yes Sub-antarctic fur seals (Bester)
Yes Australian fur seals (Arnould) *
Yes Male antarctic fur seals (Davis) *

Key: 🔀 CT 🕈 Acoustic 🐩 Camera (forwards)

Species Comparison

Species	Dive frequency (dives/h at sea)	Dive depth (m)	Dive duration (min)
Subantarctic fur seals			
Arctocephalus tropicalis ^a	$3.7 \pm 0.5 (10)$	19 ± 0.4	1.1 ± 1.0
A. tropicalis ^b	$7.9 \pm 0.6 (4)$	12 ± 6	0.7 ± 0.3
Northern fur seals			
Callorhinus ursinus ^c	1.5 ± 0.2 (7)	68 ± 20	2.2 ± 0.5
Antarctic fur seals			
A.gazella ^{d,e,f}	$3.4 \pm 0.5 (17)$	30 ± 2	0.9
A.gazella ^g	18.1 (385)	12.7	1.1
South African fur seals			
A. pusillus ^h	2.7 (2)	45	2.1
Galapagos fur seals			
A. galapagoensis ^{1,J}	$5.6 \pm 1.4 (3)$	26 ± 4.0	1.3*
Juan Fernandez fur seals			
A. phillipi ^k	$0.6^{1}(9)/1.9^{2}(6)$	$26 \pm 2/12 \pm 3$	$1.8 \pm 0.2/0.8 \pm 0.1$
Steller sea lions			
Eumetopias jubatus ¹	$17.5 \pm 1.2 (5)$	21*	1.3
California sea lions			
Zalophus californianus ^m	$16.4 \pm 0.8 (17)$	61.8 ± 5.9	2.1 ± 0.1
Galapagos sea lions			
Z. wollebaeki ^{n,f}	8.0 (3)	37	2.0
Northern elephant seals			
Mirounga angustirostris ^o	$2.7 \pm 0.1 (7)$	400 ± 59	19.2 ± 1.6
Southern elephant seals			
M. leonina ^p	$2.3 \pm 0.1 (8)$	493 ± 20	24.4 ± 1.5

Georges *et al*. 2000 Polar Biol.

Dive Analysis - Subjectivity

Surface Interval

V V ŴΨ V/ Dive: defined as excursion below x depth Bottom of dive: x % of maximum depth descent rate < xdescent rate < average descent to max depth

Dive Analysis – Scale and Resolution

S.K. Hooker

Depth 1000 m - less relative error (in descent/ascent) Depth 10 m – more relative error

Scale – respiration "dives"

S.K. Hooker

S.K. Hooker Pattern not captured by standard metrics

Data © Peter Tyack

Gas Kinetic Modelling

Physiological models run on dive traces

Hooker et al., 2009 Resp Physiol Neurobiol

Recommendations

- 1. Use high-resolution or novel sensor tag data to derive more accurate dive metrics (e.g. identifying foraging) and thus make better use of low-resolution (often historic) datasets
- 2. Consider scale in terms of relating biologging data to the population from life functions (foraging success) to vital rates (individual success)
- 3. Improvement of metrics and analytical techniques to describe and differentiate behaviour, enabling better comparison between populations and species.

Acknowledgements

Artwork: Paul Bartlett

Many colleagues at the Sea Mammal Research Unit, CNRS Chizé and Université de La Rochelle for help and suggestions

NZ rat work: John Innes (FRI)

Northern bottlenose whale work: Hal Whitehead, Robin Baird, Shannon Gowans (Dalhousie University)

Antarctic fur seal work: Ian Boyd, Susan Heaslip (SMRU), Mark Jessopp, Nick Warren (British Antarctic Survey)

Ascent exhalations: Russ Andrews, John Arnould, Martin Bester, Nick Gales, Steve Insley, Simon Goldsworthy, Christophe Guinet, Dan Costa

Diving Physiology: Andreas Fahlman, Peter Tyack, Michael Moore (WHOI)

Equipment: Jeff Goodyear, Roger Hill (Wildlife Computers), Ollie Cox (WildInsight), Mark Johnson (D-tag)