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1. Measuring behaviour

Bio-logging

ADVANCES LIMITATIONS

Resolution Capture / deployment

Sensor type Attachment
Many parallel sensors Recovery/ transmission

Miniaturisation Expense
Battery life

Memory

Often....
Small sample sizes . | ‘l ‘ @Romn -
— problems with representativeness and bias 7 M T -
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From McConnell et al. chapter 2010. MM Handbook of Techniques ., - Lo -
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Manipulative experiments
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Manipulative experiments

-
no
<
o

L ‘_1

| [J Normal
B Poisoned

Mean distance travelled (M} >

| O Time 1
@ Time 2

£
©
2
°©
>
i
@
5]
<
o
w
©
C
3]
D
=

Hooker and Innes. 1995. NZ Journal of Ecology




Mensurative experiments

‘Measurements taken at points in space or time — not involving imposition

by the experimenter of some external factor’
Hurlbert, 1984

g
Sub-population/Group

DAY

Individual

Telemetry observation

Population

From Aarts et al. 2008 Ecography




Northern bottlenose whales

ool

Individual 1 Individual 2

Depth (m)

21 00 03 06 09 12 15 18
Time of day (h)

Hooker and Baird. 1999. Proc. Roy. Soc. Lond. B.




Representativeness

Individual 1 Individual 2

Using sonar traces to verify
deep dives based on
descent rates

/\ Time 1 /\ Time 2

(CY)
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Descent rate (m/s)

deep #1  shallow #1  sonar
deep #2 shallow #2

>850m <850m

Hooker and Baird. 1999. Proc. Roy. Soc. Lond. B.
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2. Measurement of foraging

- How can we maximise broad-scale inference
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TDR: the biologging workhorse

Time-depth recorder (TDR) - samples depth at set time-intervals

time

Categorising behaviour?

e W ‘ T

Bird Island, South Georgia, 1979 - mechanical TDR




TDR: the biologging workhorse

Bird Island, South Georgia, 2002 — seals get wise!




Inferring foraging

00:00 00:00 00:00
Time (shaded areas show night)

What are the proxies for foraging?

-l C,“VGS? Camera and TDR
-all time below 10m depth?

Where in a dive does foraging take
place?

Hooker et al. 2002. Marine Mammal Science




Foraging

Foraging signatures
1. Camera results — show prey availability
2. Accelerometers / Hall sensors — show prey capture attempts

3. Stomach temperature sensors — show prey ingestion




Camera

Another foraglng p

Depth 20 m
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Camera

Krill illuminated
by flash at night

Depth 39 m




Camera

High density Krill
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Comparing:
TDR & PTT
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Proxies for prey availability?




|dentifying foraging proxies
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Marine Protected Areas

“Reserves...can help to overcome a key weakness of
conventional management: its failure to account for
ecological complexity”

|dentification of foraging
» Most threats occur during foraging
* Most can be mitigated by spatial protection

" Feeding

: (C
9 4

Density

Hooker & Gerber 2004. BioScience




Conservation Decision Making

Generation of maps based on foraging success
Relationships between these and habitat features
-provides predictive power to anticipate temporal changes

-0-01 0 +0-01
| |

Daily change in drift rate (m s=' d")

Daily estimates of change in drift rate for 79 elephant seals.
From Robinson et al. 2010. J. Anim. Ecol.




Dynamic MPAs
EXPERIMENTAL PRODUCT

avoid fishing between solid black 63.5°F and 65.5°F lines
to reduce turtle interactions

Sea Surface Temperature: 14Dec2007-16Dec2007 Ocean Currents: 05Dec2007-11Dec2007
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Data provided by Central Pacific CoastWatch node
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3. Individual fithess

- Are there successful individual strategies?
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‘Three-dimensional’ movements

2000-2001
64 trips recorded from
47 individuals




‘Three-dimensional’ movements
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Telemetry data

“Wildlife telemetry data are
spatio-temporally autocorrelated,

often unbalanced,

presence-only observations

of behaviourally complex animals,
responding to a multitude of
cross-correlated environmental variables.”

Aarts et al. 2008. Ecography




Individual strategies
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Marine Protected Areas

Critical habitat: that which when changed affects rate
of population increase (Harwood, 2001)

Demographic assessment in MPA planning

- Which animals?

- What risk?

- What affect on rate of population increase?

N @ Unsuccessful females

Successful females

Hooker et al. In press. ESR
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4. Beyond populations

- The comparative approach
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Image from Berta et al. 2005 Marine Mammals: evolutionary biology




The puzzle of ascent exhalations in fur seals

salinity
33.0 332 334 336 338 340

descent

Temperature Sensor

ascent Conductivity Sensor

depth (m)

0

Sensor Guard

time (min)
40

o' 8

time (min)

e 29 individuals: every dive (over 12,000 dives)
e Range of dive depths (10 — 160 m)

e Diving on inhalation and exhaling expanding air on ascent
— maintains constant minimal lung volume
— preventing reduction in lung partial pressure
— minimises reduction in blood O2 (minimises shallow-water blackout)

Hooker et al. 2005. Proc Roy Soc Lond B




No
No
No

Other pinnipeds

Phocids — exhalation divers
Harbour seals, Grey seals (Bowen et al.) &

Weddell seals (Davis etal) =
Northern elephant seals (Costa; Tyack) &' J

Otariids — inhalation divers
Australian sea lion (Goldsworthy) *%
Hooker’s sea lions (Gales) %

Steller sea lions (Davis, Andrews) &

Yes Northern fur seals (Insley; Andrews) ¥ J' <x]
Yes Sub-antarctic fur seals (Bester) <X]

Yes Australian fur seals (Arnould) %+

Yes Male antarctic fur seals (Davis) %+




Species Comparison

Species

Dive frequency
(dives/h at sea)

Dive
depth (m)

Dive duration
(min)

Subantarctic fur seals
Arctocephalus tropicalis®
A. tropicalis®

Northern fur seals
Callorhinus ursinus®
Antarctic fur seals
A.gazella®®*

A.gazella®

South African fur seals
A. pz.l.s‘ilhl.\‘h

Galapagos fur seals

A. galapagoensis™

Juan Fernandez fur seals

A. phillipi ©

Steller sea lions
Eumetopias jubatus'
California sea lions
Zalophus californianus™
Galapagos sea lions

Z. wollebaeki ™*
Northern elephant seals

Mirounga angustirostris®

Southern elephant seals
M. leonind®

3.7 + 0.5 (10)
7.9 + 0.6 (4)

1.5 £+ 0.2(7)

3.4 + 0.5(17)
18.1 (385)

2.7 (2)
56 + 1.4(3)
0.6" (9)/1.9% (6)
17.5 + 1.2 (5)
16.4 + 0.8 (17)
8.0 (3)

2.7 + 0.1(7)

2.3 + 0.1(8)

61.8 £ 5.9
37
400 + 59

493 + 20

0.9
1.1

2.1

1.3*

1.8 £ 0.2/0.8 = 0.1

19.2 £ 1.6

244 £ 1.5

Georges et al. 2000 Polar Biol.




Dive Analysis - Subjectivity

Surface Interval

vl o NN N7 N7

Dive: defined as excursion below x depth

Bottom of dive:
X % of maximum depth
descent rate < x
descent rate < average descent to max depth




Dive Analysis — Scale and Resolution

Surface Interval

\4

Depth 1000 m - less relative error (in descent/ascent)
Depth 10 m — more relative error




Scale — respiration “dives”

18 blows
19 blows

2 mins at surface
37 75 ag . 3.5 mins at surface
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Pattern not captured by standard metrics
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Gas Kinetic Modelling

Sealion dive profiles Fur seal dive profiles

l !

Higher blood O, at Lower blood O, at
end of dives? end of dives?




Gas Kinetic Modelling

Physiological models run on dive traces
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Recommendations

1. Use high-resolution or novel sensor tag data to derive more
accurate dive metrics (e.g. identifying foraging) and thus make
better use of low-resolution (often historic) datasets

2. Consider scale in terms of relating biologging data to the
population - from life functions (foraging success) to vital rates
(individual success)

3. Improvement of metrics and analytical techniques to describe and
differentiate behaviour, enabling better comparison between
populations and species.
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