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Study maximum diving depth of seals

I We would like a
continuous record of dive
depth in meters, but...

I Logistical constraints of
satellite
time-depth-recorders
(TDRs)

I Data storage aboard
the mammal

I Transmission of data
to satellite
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Desired inference

I Our main goal: quantify and describe relationships
between covariates and the categorical response.

I Also interested in predicting missing data

I Covariates of interest:
I Time of Day (4 categories)
I Day of Year
I Season (Fall, Spring, Pupping)
I Ocean depth?
I Sex
I Age (3 categories)
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Motivating Data

I Adult Female
Discretized and aggregated: Modeling dive depth of harbor seals 25
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Figure 1. Raw data from two animals: (top) an adult female from April 30 - August 19,
2006 and (bottom) a juvenile male from May 10 - July 18, 2005. The plot displays a time
series of barplots showing the relative proportions of dives from each time period falling in 8
(top) or 9 (bottom) defined depth classes. Red indicates shallow depths and blue indicates
deep depths. The total number of dives per time period is plotted along the top, with red
vertical lines indicating missing time periods.
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The Data

Characteristics of the data

I Continuous dive depth is categorized
into ordered categories with a practically
meaningful set of bin boundaries

I Ordinal data discretized from
continuous behavior

I Aggregated over time (6 hr. intervals)
into multi-category counts

I Time series of multi-category counts for
each animal

I Multiple animals and years

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

The Data

Characteristics of the data

I Continuous dive depth is categorized
into ordered categories with a practically
meaningful set of bin boundaries

I Ordinal data discretized from
continuous behavior

I Aggregated over time (6 hr. intervals)
into multi-category counts

I Time series of multi-category counts for
each animal

I Multiple animals and years

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

The Data

Characteristics of the data

I Continuous dive depth is categorized
into ordered categories with a practically
meaningful set of bin boundaries

I Ordinal data discretized from
continuous behavior

I Aggregated over time (6 hr. intervals)
into multi-category counts

I Time series of multi-category counts for
each animal

I Multiple animals and years

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

The Data

Characteristics of the data

I Continuous dive depth is categorized
into ordered categories with a practically
meaningful set of bin boundaries

I Ordinal data discretized from
continuous behavior

I Aggregated over time (6 hr. intervals)
into multi-category counts

I Time series of multi-category counts for
each animal

I Multiple animals and years

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

The Data

Characteristics of the data

I Continuous dive depth is categorized
into ordered categories with a practically
meaningful set of bin boundaries

I Ordinal data discretized from
continuous behavior

I Aggregated over time (6 hr. intervals)
into multi-category counts

I Time series of multi-category counts for
each animal

I Multiple animals and years

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Hierarchical Model

I Total Number of Dives
I ni ∼ [(Total Number Dives)i|covariatesi] = Poi(λi)
I log(λi) = x′iβ + εi
I {εi} are temporally autocorrelated

I Categorical Counts
I yi ∼ [(Counts per Category)i|ni, covariatesi] = Mult(ni,pi)
I f (pi); xi, δi,k ?
I δi,k are temporally autocorrelated for fixed k

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction The Data Models Results Conclusions

Models

Three Basic Categorical Models

I Multinomial Logistic Model
I For unordered categorical data
I E.g., counties, colors, etc.

I Cumulative Logit Model
I For ordered categorical data
I E.g, Strongly Agree→ Strongly Disagree

I Aggregated Continuous-value Models
I When category values have real-value meaning
I E.g, binned dive depths
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Models

The Basic idea; e.g., p = (0.4, 0.1, 0.2, 0.3)

I Create probabilities by
cutting a standard
normal distribution

I The pk will be the
probability between
cutpoints

I Then model the cutpoints
with covariates and
autocorrelation
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Models

Cutpoint Model

I Can model η1 directly
with covariates
η1,i = x′iθ1 + δ1,i

I ηk,i = ηk−1,i + ak−1,i for
k > 1

I To keep order relations,
need to model additive
increments
log(ak,i) = x′iθk + δk,i

I pk,i = Φ(ηk,i)− Φ(ηk−1,i)
where Φ is standard
normal CDF

Discretized and aggregated: Modeling dive depth of harbor seals 27
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Figure 3. Diagram showing the connection of the model parameters to the construct of
clipping, or thresholding, a standard normal distribution for K = 8.
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Models

Estimation and Inference

I We used Bayesian Methods

I Fit model using Markov Chain Monte Carlo
I Obtained posterior distribution of parameters:

I ’regression’ parameters β (overall counts), θk (kth category
probabilities)

I autocorrelation parameters

I Made predictions from posterior predictive distribution
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Figure 6. The top two plots are smoothed density plots of posterior distributions of
proportion of dives in depth classes 1 (4 to 10 meters) and 2 (10 to 20 meters) by time-
of-day for the juvenile male (JM). The bottom two plots compare the posterior distributions
of weighted average depth by time-of-day for the juvenile male (JM) and the adult female
(AF).
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Figure 5. Time Series of barplots showing fitted proportions of dives to each depth class
for an adult female (AF) (top) and a juvenile male (JM) (bottom). Red end of the color
scale indicates shallow depths and blue indicates deep depths. The total number of dives per
time period is plotted along the top, where red lines represent the predicted number of dives
for missing time periods. The black lines are plotted with respect to the second y-axis and
correspond to measures of weighed average depth. The middle darker line is the posterior
mean of the weighted average depth averaged over time periods within each day and the
lines above and below give the associated 95% posterior intervals.
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Figure 5. Time Series of barplots showing fitted proportions of dives to each depth class
for an adult female (AF) (top) and a juvenile male (JM) (bottom). Red end of the color
scale indicates shallow depths and blue indicates deep depths. The total number of dives per
time period is plotted along the top, where red lines represent the predicted number of dives
for missing time periods. The black lines are plotted with respect to the second y-axis and
correspond to measures of weighed average depth. The middle darker line is the posterior
mean of the weighted average depth averaged over time periods within each day and the
lines above and below give the associated 95% posterior intervals.
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Conclusions

I We can effectively use hierarchical cutpoint models to:
I model effect of covariates on overall counts and category

probabilities,
I estimate full posterior distributions of category probabilities,
I compute functions of probabilities (e.g., weighted average

depth) using full posterior distribution, and
I Make predictions for unobserved time periods.

I Manuscript submitted:
I Higgs, M.D. and Ver Hoef, J.M. Discretized and

Aggregated: Modeling Dive Depth of Harbor Seals from
Ordered Categorical Data with Temporal Autocorrelation.
Submitted to Biometrics.
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