Movement Up and Down: Modeling Dive
Depth of Harbor Seals from Time Depth
Recorders

Jay Ver Hoef!, Megan Higgs?, and Josh London!

INOAA National Marine Mammal Lab
NMFS Alaska Fisheries Science Center
Seattle, Washington, USA
2Department of Statistics, Montana State University
Bozeman, Montana, USA

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction
@00

Introduction

Acknowledgements

This project received financial support from the NOAA Alaska Fisheries
Science Center and the US Department of Interior Mineral Management
Service.

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction
oeo

Introduction

Study maximum diving depth of seals

» We would like a
continuous record of dive
depth in meters, but...

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction
oeo

Introduction

Study maximum diving depth of seals

» We would like a
continuous record of dive
depth in meters, but...

» Logistical constraints of
satellite
time-depth-recorders
(TDRs)

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction
oeo

Introduction

Study maximum diving depth of seals

» We would like a
continuous record of dive
depth in meters, but...

» Logistical constraints of
satellite
time-depth-recorders
(TDRs)

» Data storage aboard
the mammal

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction

oeo

Introduction

Study maximum diving depth of seals

» We would like a
continuous record of dive
depth in meters, but...

» Logistical constraints of
satellite
time-depth-recorders
(TDRs)

» Data storage aboard
the mammal

» Transmission of data
to satellite

Jay M. Ver Hoef NOAA National Marine Mammal Lab




Introduction
ooe

Introduction

Desired inference

» Our main goal: quantify and describe relationships
between covariates and the categorical response.

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction
ooe

Introduction

Desired inference

» Our main goal: quantify and describe relationships
between covariates and the categorical response.

» Also interested in predicting missing data

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction
ooe

Introduction

Desired inference

» Our main goal: quantify and describe relationships
between covariates and the categorical response.

» Also interested in predicting missing data

» Covariates of interest:
» Time of Day (4 categories)
» Day of Year
» Season (Fall, Spring, Pupping)
» Ocean depth?

Jay M. Ver Hoef NOAA National Marine Mammal Lab



Introduction
ooe

Introduction

Desired inference

» Our main goal: quantify and describe relationships
between covariates and the categorical response.

» Also interested in predicting missing data

» Covariates of interest:

» Time of Day (4 categories)
Day of Year
Season (Fall, Spring, Pupping)
Ocean depth?
Sex
Age (3 categories)
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Characteristics of the data

» Continuous dive depth is categorized
into ordered categories with a practically
meaningful set of bin boundaries

» Ordinal data discretized from
continuous behavior

» Aggregated over time (6 hr. intervals)
into multi-category counts

» Time series of multi-category counts for
each animal

» Multiple animals and years
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Hierarchical Model

» Total Number of Dives

» n; ~ [(Total Number Dives);|covariates;] = Poi(\;)
» log(\i) =xiB+ €
» {¢} are temporally autocorrelated

» Categorical Counts

» y; ~ [(Counts per Category);|n;, covariates;] = Mult(n;, p;)

» f(pi)ixi, 0ix ?
» 0, are temporally autocorrelated for fixed k
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Three Basic Categorical Models

» Multinomial Logistic Model

» For unordered categorical data
» E.g., counties, colors, etc.

» Cumulative Logit Model

» For ordered categorical data
» E.g, Strongly Agree — Strongly Disagree

» Aggregated Continuous-value Models

» When category values have real-value meaning
» E.g, binned dive depths
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The Basic idea; e.g., p = (0.4,0.1,0.2,0.3)

Shallow Deep

» Create probabilities by
cutting a standard
normal distribution

» The py will be the
probability between
cutpoints

» Then model the cutpoints _ |
with covariates and )
autocorrelation
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We used Bayesian Methods

v

Fit model using Markov Chain Monte Carlo
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Obtained posterior distribution of parameters:

» ’regression’ parameters 3 (overall counts), 8y (k" category
probabilities)
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Made predictions from posterior predictive distribution
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» model effect of covariates on overall counts and category
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» estimate full posterior distributions of category probabilities,

» compute functions of probabilities (e.g., weighted average
depth) using full posterior distribution, and

» Make predictions for unobserved time periods.

» Manuscript submitted:

» Higgs, M.D. and Ver Hoef, J.M. Discretized and
Aggregated: Modeling Dive Depth of Harbor Seals from
Ordered Categorical Data with Temporal Autocorrelation.
Submitted to Biometrics.
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Further Work

» Computational speed is an issue for large data sets.
» Models need to be extended to multiple animals.
» Develop an R package?
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