Case: Acoustic data Individual analysis Population analysis Population inference Conclusion
0000 oo oo 00000 o

Individual based population inference using tagging data

Martin W. Pedersen, Uffe H. Thygesen, Henrik Baktoft and Henrik Madsen
Fourth International Science Symposium on Bio-logging
15 March 2011

Technical University of Denmark



The purpose of many bio-logging experiments is to gain knowledge
about populations rather than about specific individuals.



The purpose of many bio-logging experiments is to gain knowledge
about populations rather than about specific individuals.

However, many bio-logging data are individual based.



Case: Acoustic data Individual analysis Population analysis Population inference Conclusion
0000 oo oo 00000 o

Motivation /Objective

The purpose of many bio-logging experiments is to gain knowledge
about populations rather than about specific individuals.

However, many bio-logging data are individual based.

Therefore, techniques for analysing multiple individuals are often
needed.



Case: Acoustic data Individual analysis Population analysis Population inference Conclusion
0000 oo oo 00000 o

Motivation /Objective

The purpose of many bio-logging experiments is to gain knowledge
about populations rather than about specific individuals.

However, many bio-logging data are individual based.

Therefore, techniques for analysing multiple individuals are often
needed.

Goal: Develop a simple, flexible, and fast method for inference in
groups using data from individuals.
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Case:
Analysis of acoustic telemetry
data
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Acoustic data logging

Setup
» Acoustic transmitters on M = 20 pike (Esox lucius L.).
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Acoustic data logging

Setup
» Acoustic transmitters on M = 20 pike (Esox lucius L.).

Retrieved data: horizontal location (via BioMap software),
depth (via pressure).

v

» Sample interval 45 sec. Total recording time: 2 months
(~ 100000 obs per individual).

» Filtering to reduce the effect of outliers.

» Location uncertainty is negligible after filtering.
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The population of tagged pike

Numbered and sorted by length:
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Model for individual analysis
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Hidden Markov model (HMM) for movement behaviour

Setup a 2-state hidden Markov model for the unobservable
movement behaviour, B;, of an individual pike.

» Movement behaviours: B; € {resting, moving}.

» Observations: Average speed (body length per second)
between locations.

» Covariate information: Time of day, 7 € {day, night}.
» Estimate model parameters with maximum likelihood.

Summarize estimates via the stationary distribution of B; for
individual i.

So, 0; = [#(42) g(night)]. is the probability that i is resting at day
and night time respectively.
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Individual likelihood functions
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Population analysis

combining individual analyses



Mixed effects model:



Mixed effects model:

Z1) e Z() e z(M)

Individual datasets
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Combining individual analyses

Mixed effects model:

9,’ =0+ W;
01 e 0[. . BM

Individual datasets

Conclusion
o

Random effects: w; ~ N(0, W), Population parameters: 8 and W.
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Individuals and population
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Population inference



Population parameter estimates (6 is probability fish is at rest):

(@) — 0.7838, g(nieht) — 0 9785.
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Difference between day and night?

Population parameter estimates (6 is probability fish is at rest):
9(dy) — 0.7838,  ¢(night) — 0.9785.

Standard statistical tests conclude that day and night time
behaviour are significantly different (p-value 3.73 x 10713)
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» For the reduced population calculate the ML estimates: § w.
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Deviating individuals?

Leave-one-out procedure (for night or day):

Loop over j € {1,..., M}

» Leave out individual j from the population.

Conclusion
o

o~~~

» For the reduced population calculate the ML estimates: 6, W.

» Test in a y>-distribution if individual j is significantly different

from the reduced population.
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Leave-one-out (3/3)

Day, left out: 5,12
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Conclusion

Key assumption: Individual likelihood functions must be well
approximated by a Gaussian.
Important properties of the method:

» The technique is compatible with any type of individual model
estimated with ML.

» Individuals are estimated independently, easy to include new
data.

» Population estimation is fast (seconds).

» Individuals deviating from the population can be identified.

Thank you for listening!
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