Tracing Nitrogen in Food Webs using Compound Specific Isotope Ratio Mass Spectrometry

R. Leeming

Biomarker Signature for;

Sterols Faecal contamination, algae, higher plants, high-

organic anaerobic environments

Bile Acid Human and animal faceal matter

Ketones
Algal and paleoclimatic markers

⇒ Long-chain diols Algal markers (e.g. Eustigmatophytes)

⇒ Fatty Acids Algal and bacterial markers

Polar Lipids Algal and bacterial biomass, community structure

and nutritional status (from cell membrane)

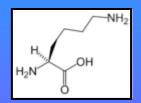
Hydrocarbons Oil spills / reserves, algal groups (diatoms, blue

green algae)

C & N Isotopes Biogeochemical studies of primary productivity and

foodwebs

Fitzroy River – macrotidal, subtropical estuary



Amino Acids

Tracing the flow of nitrogen through biogeochemical systems

How much re-working is carried out by heterotrophic bacteria?

How important is N₂ fixation in this system? Cyanobacteria?

Measuring changes in trophic structures in pelagic ecosystems

Distinguishing between nutrient and trophic dynamics in ecosystems

Evaluating fishery impacts on ecosystems

Amino Acids

Essential versus non-essential amino acids describe carbon flow through Biochemical systems; e.g synthesis of specific carbon skeletons

Amino Acids

Essential ramina de sids

Valine Leusins

Aspartate Glutamate

Rhenvlalanin

Alanine Proline

Trytophai

*Histidine

*Arainine

Slowræsemitial acids

Algoine Sayrine

Prolinging

Aspesitate

Serine

Glutamaterine

Tyrosine

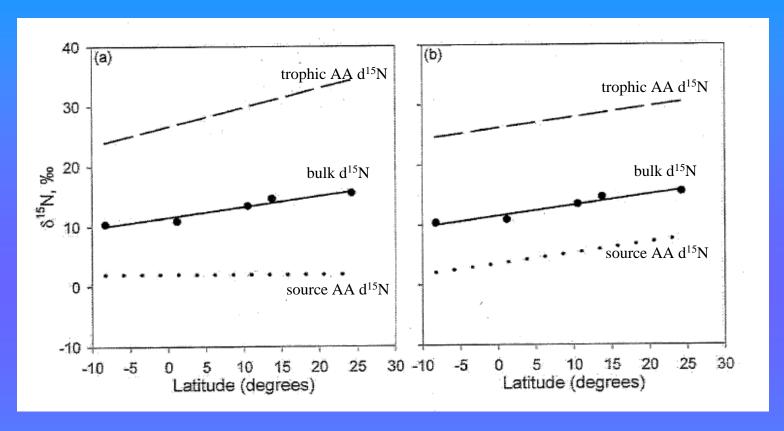
Cysteine

Glutamine

Asparagine

The difference in $\delta^{15}N$ values of these two groups reflect the degree of transanimation experienced during biosynthesis.

The bulk $\delta^{15}N$ values in white muscle tissue of eastern pacific tuna ranged from 10 to 15‰ depending on latitude.


The amino acid $\delta^{15}N$ values in white muscle tissue of eastern pacific tuna range from;

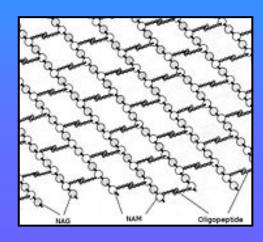
Source amino acids 2.2 to 7.5‰ depending on latitude

Trophic amino acids 27.5 to 30.8 % depending on latitude

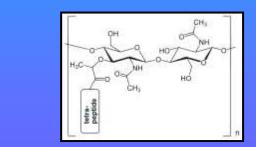
From Popp et. al., 2008

a) No change in $\delta^{15}N$ at the base of the food chain, but a trophic shift with latitude

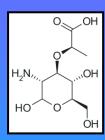
b) No change in $\delta^{15}N$ trophic level, but a shift in the base of the food chain with latitude


Utilizing effluents in the production of shrimp / prawns

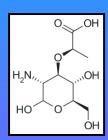
Benefits of the <u>right</u> microbial community structure to shrimp culture


- Enhanced animal growth
- Improved animal product quality such as colour
- Improved water quality through reduction of ammonia and nitrite
- Enhanced animal health through stimulation of immune system.

Ju et. al. 2008



Peptidoglycan (or murein) forms The membrane of gram-positive And gram-negative bacteria


Peptidoglycan consists of alternating ether linked N-acetylglucosamine and N-acetylmuramic acid monmers

Muramic Acid

Measures how much bacteria is present in complex samples

Also contains nitrogen thus will compliment biogeochemical studies as both a source biomarker and an isotopic biomarker

In conjunction with pigment analyses can determine the community structure of floc cultures.

Table 3 Profiles of phytoplankton community structure (%) of shrimp floc samples collected from outdoor raceways and cylindrical culture tanks

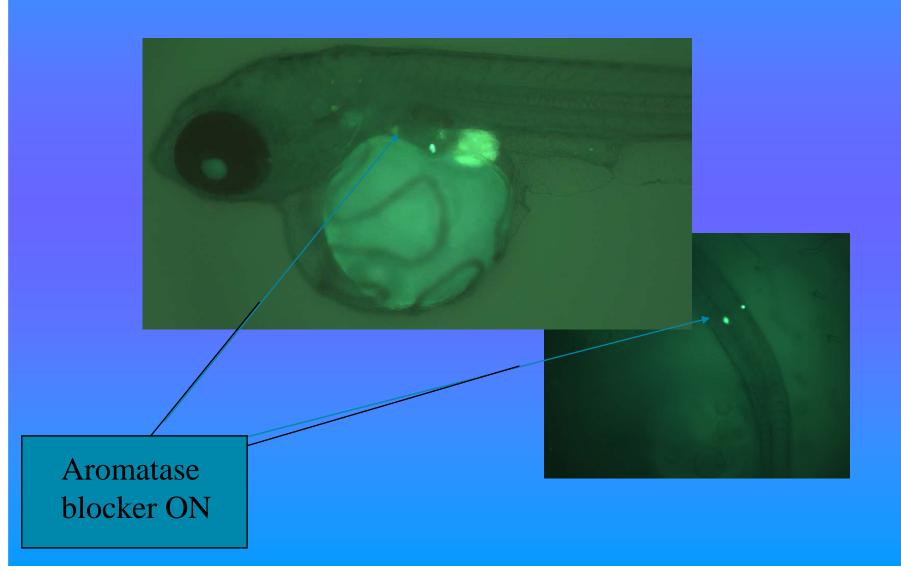
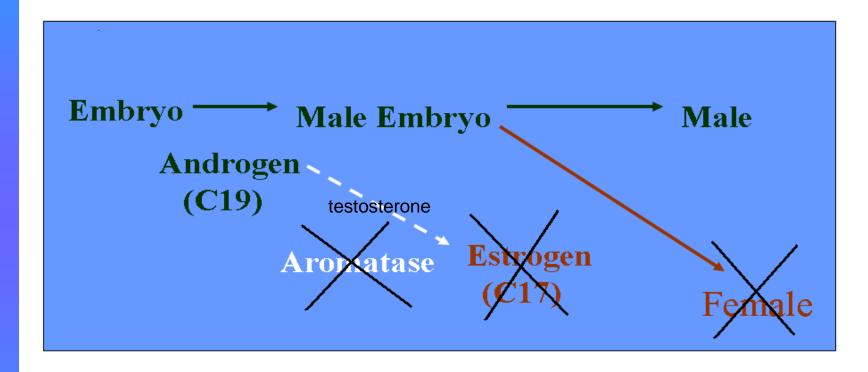

Algal class	Phytoplankton community composition (%)					
	Floc-A	Floc-B	Floc-C	Floc-D		
Diatoms	4.3	8.2	84.4	81.7		
Chlorophytes	82.3	75.4	5.5	9.8		
Cyanobacteria	5.9	0.6	0.1	0.1		
Dinoflagellates	2.6	6.9	7.3	7.5		
Cryptophytes	5.0	8.9	2.7	0.9		

Table 4 Algae and bacteria biomass $(g\,kg^{-1})$ and their ratios (dried sample basis) of floc materials collected from outdoor shrimp raceways and tanks


Biomass/floc type	Floc-A	Floc-B	Floc-C	Floc-D
Algae biomass	244.1	43.7	252.3	239.9
Bacteria biomass	12.8	78.3	25.6	34.2
Total	256.9	122.0	277.9	274.1
Algae:Bacteria (ratio)	19.1:1	0.5:1	9.9:1	7.0:1

Larval fish with genetic construct to switch off aromatase

Fish Sexual Development

Estradiol

Measurement of phenotypic expression of genetically modified organisms

Eradication of pest species e.g carp

Manipulated aquaculture species; e.g. breeding, triploid

Environmental issues

Imposex; e.g. tri-butyl tin exposure

Endocrine disruption studies

