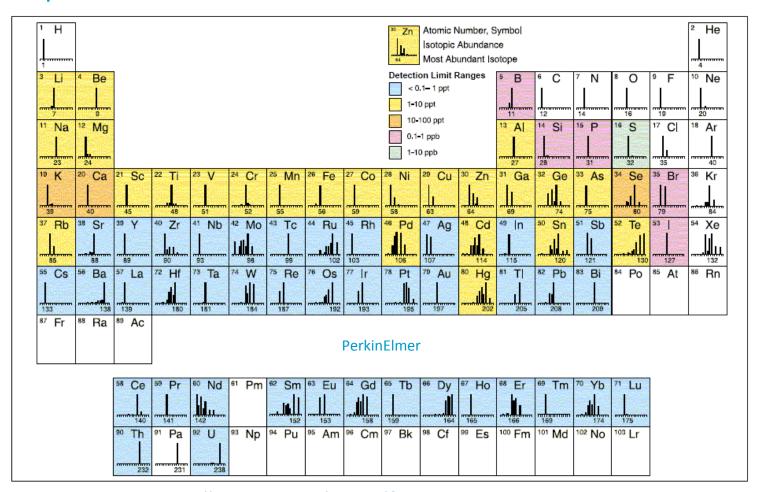


Trace Elements as Tracers

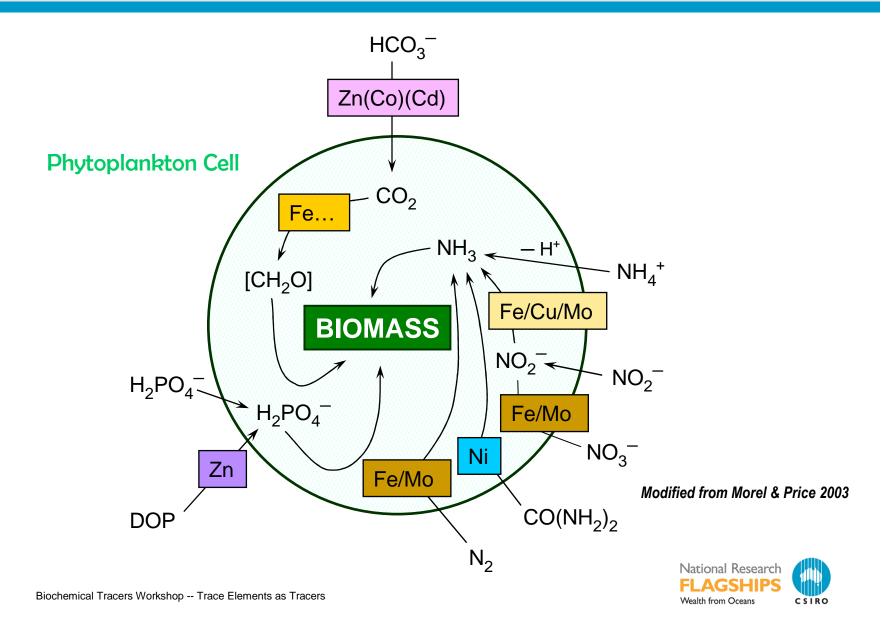
Biochemical Tracers Workshop

Edward Butler


for 'Micronutrients and Primary Production' Team

Which trace elements?

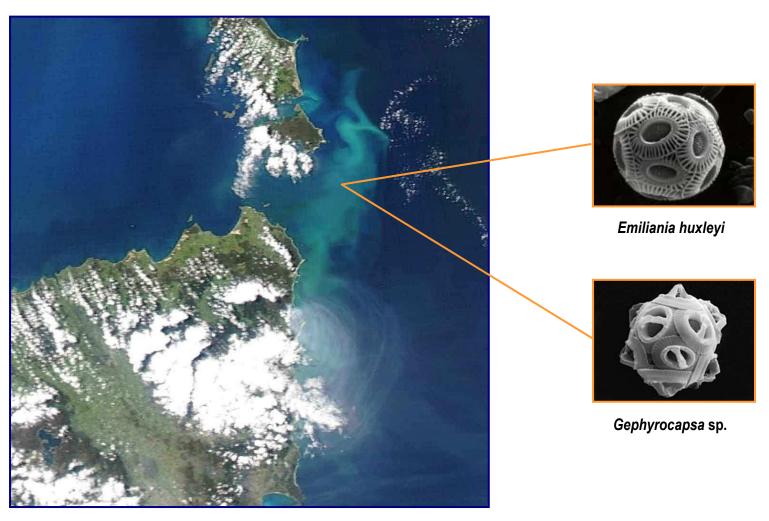
Scope of ICP-MS measurements



http://www.csiro.au/places/CleanRoomFacility.html

Micronutrients in key C, N & P pathways

COBALT — a "bio-influential" micronutrient


 Cyanobacteria (Synechococcus & Prochlorococcus) and the cocco-lithophorid Emiliania huxleyi have a demand for cobalt.

[*Thalassiosira* spp. diatoms prefer zinc over cobalt] (Sunda & Huntsman 1995, Saito 2002)

Southern Ocean transect across Antarctic Polar Front ...
declining bioavailable cobalt poleward ... corresponding
decrease in Synechococcus sp.
(Ellwood et al. 2005)

Coccolithophorid bloom off NE Tasmania

MODIS - Aqua, 19 Oct 2004

National Research
FLAGSHIPS
Wealth from Oceans

Trace elements and marine biota – 1.

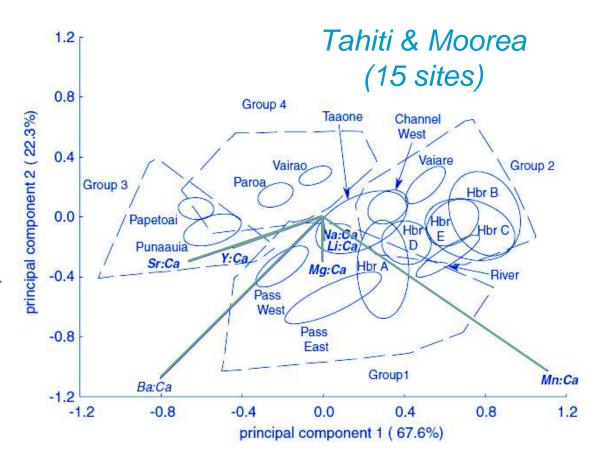
Analyses of hard parts of marine organisms

- otoliths of fish
- statoliths of squid
- styles of octopus
- mollusc shells
- diatoms / coccoliths
- corals
- total analysis, or location-specific (linked to temporal variation of life form via pattern of growth rings)

Trace elements and marine biota – 2.

Examples of the use of trace elements as markers:

- Fish life-histories (e.g. migrations)
 - Sr:Ca ratios, Ba, Mg, Li, Mn, Cu, Zn, ...
- Stock identification
 - e.g. Orange Roughy via 10-element suite(Ba, Cd, Cu, K, Mg, Na, Pb, S, Sr, Zn)
- Nursery habitat
 - natal rivers via K, Li, Mg, Mn, Ba, Sr ...
- Exposure to contaminants
 - otoliths, but also scales / fins Hg, (Se), Cu, Pb, V, Zn, ...


Otolith example – distinguishing fish habitat

Stegastes nigricans

(a damselfish)

Whole sagittal otoliths (n = 293)

Ba, Ca, Li, Mg, Mn, Na, Sr and Y

Lo-Yat et al. 2005, Coral Reefs 24:646

Corals: longer term tracers – 1.

Tropical corals have been used to track coastal contamination (e.g. Ba, Cd, Cr, Cu, Mn & Sb), but also historical upwellings * ...

Indicators/ Processes	SST	Salinity	Upwelling/ Nutrients	Human Inputs	ENSO	Land Runoff	Rainfall	Light
¹⁸ O/ ¹⁶ O	××	××			××		×	
¹³ C/ ¹² C			×	×	×			×
Sr/Ca	××				×	(×)		
Ba/Ca	×	×	××		×	×		
Cd/Ca	×		××	×	×			
Mn/Ca			×					
Pb/Ca				××				
Bomb radionuclides			×	××	×			
UV Fluor						××		

 $[\]times\!\!\times$ strong signals ubiquitously; \times strong signals at some sites

Chen 1993, Bull Inst Fr Etud Andines 22: 125

^{*} the M:Ca ratio in the substrate can be used to reconstruct past concentrations of M in seawater, assuming Ca levels have remained unchanged in seawater

Corals: longer term tracers – 2.

- Real potential is with climate variability / change
 - > the hope: "century-long records of ocean chemistry and temperature with weekly time resolution"
- The potential is gradually being realised, esp. with deep-sea corals, e.g.
 - > more precise dating / calibration with U-Th series
 - > multiple tracer records
 - > past ocean circulation (3H in coral organics?)
 - > ⁷Be and ¹⁰Be insights to particle dynamics?
 - > ...
- Some challenges ahead understanding coral accretion fully (e.g. ultra-structural variations)

Future prospects

- Other trace elements (e.g. REEs)
- Stable isotopes of trace elements
 - > sources, dynamics, etc.
- Trace element speciation
 - > cycling of elements within organisms, food webs, etc.

•

